Please wait a minute...
img

官方微信

遥感技术与应用  2010, Vol. 25 Issue (1): 155-160    DOI: 10.11873/j.issn.1004-0323.2010.1.155
综述     
浅析遥感光谱特征参量的原理及基本方法
谭昌伟1,2,郭文善1,王纪华3,朱新开1,王君婵1
1.扬州大学江苏省作物遗传生理重点实验室,江苏 扬州 225009;
2.黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西 杨凌 712100;
3.国家农业信息化工程技术研究中心,北京 100089
A Review on the Principles and Basic Methods of Remote Sensing Spectral Characteristic Parameters
TAN Chang-wei1,2,GUO Wen-shan1,WANG Ji-hua3,ZHU Xin-kai1,WANG Jun-chan1
1.Jiangsu Province Key Laboratory of Crop Genetics and Physiology,Yangzhou University,Yangzhou 225009,China;2.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Yangling 712100,China;3.National Engineering Research Center for Information Technology in Agriculture,Beijing 100097,China
 全文: PDF(1314 KB)  
摘要:

概述了导数光谱、红边参数、光谱吸收特征以及光谱反射特征等遥感光谱特征参量的原理及基本方法,总结和分析了这些参量在植被领域中的应用动态,提出了遥感技术存在的问题及其应用展望,遥感光谱特征参量能够为植被理化信息的提取提供强有力的工具。

关键词: 遥感光谱特征参量植被    
Abstract:

The principles and methods of remote sensing spectral characteristic parameters including derivative spectrum,red edge parameter,spectrum absorption characteristics and spectrum reflectance characteristics,national and international development of hyperspectral remote sensing and its application in extracting biophysical and biochemical information of vegetation,and the feasibility of vegetation indices application are reviewed.The potentiality of further application of remote sensing technology in extracting vegetation information in order to promote remote sensing was put forward.Remote sensing spectral parameter provides a powerful tool for extracting vegetation biophysical and biochemical information.

Key words: Remote sensing    Spectral characteristic parameters    Vegetation
收稿日期: 2008-12-03 出版日期: 2011-11-04
基金资助:

农业部资源遥感与数字农业重点开放实验室开放基金项目(RDA0805)和国家高技术研究发展计划资助项目(2006AA12Z138)。

作者简介: 谭昌伟(1980-),男,讲师,博士,主要从事遥感的农业应用研究。E-mail:tanwei010@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谭昌伟
郭文善
王纪华
朱新开
王君婵

引用本文:

谭昌伟, 郭文善, 王纪华, 朱新开, 王君婵. 浅析遥感光谱特征参量的原理及基本方法[J]. 遥感技术与应用, 2010, 25(1): 155-160.

TAN Chang-wei, GUO Wen-shan, WANG Ji-hua, ZHU Xin-kai, WANG Jun-chan. A Review on the Principles and Basic Methods of Remote Sensing Spectral Characteristic Parameters. Remote Sensing Technology and Application, 2010, 25(1): 155-160.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2010.1.155        http://www.rsta.ac.cn/CN/Y2010/V25/I1/155

[1]Boochs F,Kupfer G.Shape of the Red Edge as Vitality Indicator for Plants[J].Internation Jounal of Remote Sensing,1990,10(11):1741-1753.
[2]Tang Yanlin,Huang Jingfeng.Study on Hyperspectral Remote Sensing in Agriculture[J].Remote Sensing Technology and Application,2001,4(16):248-251.[唐延林,黄敬峰.农业高光谱遥感研究的现状与发展趋势[J].遥感技术与应用,2001,4(16 ):248-251.]
[3]Tong Q X,Zheng L F.Hyperspectral Remote Sensing in China[M].Multispectral and Hyperspectral Image Acquisition and Processing,Proceedings of SPIE,Wuhan,2001,4548:1-9.
[4]Zhao Y C.New Vegetation Models for Hyperspectral Remote Sensing,Progress of Agricultural Information Technology[M].Beijing:International Academic Publishers,ISIAIT,2000:294-300.
[5]Tong Q X,Zhao Y C.Hyperspectral Remote Sensing Applied on Precision Agriculture in China[M].Beijing,ICAST Session,2001,6:237-244.
[6]Zhao D H,Huang L M,Li J L,et al.A Comparative Analysis of Broadband and Narrowband Derived Vegetation Indices in Predicting LAI and CCD of a Cotton Canopy[J].Photogrammetry & Remote Sensing,2007,401:1-9.
[7]Clark R N.High Spectral Resolution Reflectance Spectroscopy of Minerals[J].Journal of Geophysical Research,1990,8(95):12653-12680.
[8]Fisher A W.Mapping and Correlating Desert Soils and Surfaces With Imaging Spectroscopy[C]//Proc.of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop.JPL Publication,1991,91(28):23-32.
[9]Gao B C,Goetz F H.Column Atmospheric Water Vapor and Vegetation Liquid Water Retrieval from Airborne Imaging Spectrometer Data[J].Journal of Geophysical Research,1990,4(95):3549-3563.
[10]Yi Qiuxiang,Huang Jingfeng,Wang Xiuzhen,et al.Hyperspectral Remote Sensing Estimation Models for Nitrogen Contents of Maize[J].Transactions of the Chinese Society of Agricultural Engineering,2006,22(9):138-143.[易秋香,黄敬峰,王秀珍,等.玉米全氮含量高光谱遥感估算模型研究.农业工程学报,2006,22(9):138-143.]
[11]Zhang Jinheng,Wang Ke.Predicting Nitrogen Status of Rice Using Multispectral Data at Canopy Scale[J].Pedosphere,2006,16(1):108-117.[张金恒,王珂.基于连续统去除法的水稻氮素营养光谱诊断[J].植物生态学报,2006,30(1):78-82.]
[12]Liu Weidong,Xiang Yueqin,Zheng Lanfen,et al.Relationships between Rice LAI,CH.D and Hyperspectra Data[J].Journal of Remote Sensing,2000,4(4):279-283.[刘伟东,项月琴,郑兰芬,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报,2000,4(4):279 -283.]
[13]Xue Lihong,Yang Linzhang,Fan Xiaohui.Estimation of Nitrogen Content and C/N in Rice Leaves and Plant with Canopy Reflectance Spectra[J].Acta Agronomica Sinica,2006,32(3):430-435.[薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测[J].作物学报,2006,32(3):430-435.]
[14]Li Kaili,Jiang Jianjun,Mao Rongzheng,et al.The Modeling of Vegetation through Leaf Area Index by Means of Remote Sensing[J].Acta Ecologica Sinica,2005,25(6):1491-1496.[李开丽,蒋建军,茅荣正,等.植被叶面积指数遥感监测模型[J].生态学报,2005,25(6):1491-1496.]
[15]Liu Zhanyu,Huang Jingfeng,Wu Xinhong,et al.Hyperspectral Remote Sensing Estimation Models on Vegetation Coverage of Natural Grassland[J].Chinese Journal of Applied Ecology,2006,17(6):997-1002.[刘占宇,黄敬峰,吴新宏,等.天然草地植被覆盖度的高光谱遥感估算模型[J].应用生态学报,2006,17(6):997-1002.]
[16]Tang Yanlin,Huang Jingfeng,Wang Renchao,et al.Comparsion of Yield Estimation Simulated Models of Rice by Remote Sensing[J].Transactions of the CSAE,2004,20(1):166-171.[唐延林,黄敬峰,王人潮,等.水稻遥感估产模拟模式比较[J].农业工程学报,2004,20(1):166-171.]
[17]Tan Changwei,Wang Jihua,Huang Wenjiang,et al.Study on Spectral Variation of LTN,CHL and LAI of Summer Maize[J].Acta Botanica Boreali-occidentalia Sinica,2004,24(6):1041-1046.[谭昌伟,王纪华,黄文江,等.夏玉米叶片全氮、叶绿素及叶面积指数的光谱响应研究[J].西北植物学报,2004,24(6):1041-1046.]
[18]Tan Changwei,Wang Jihua,Huang Yide,et al.Quantitative Improvement of Beer-Lambert Law with Spectral Remote Sensing Technology and Its Application[J].Scientia Agricultura Sinica,2005,38(3):498-503.[谭昌伟,王纪华,黄义德,等.运用光谱技术改进Beer-Lambert定律的定量化及其应用研究[J].中国农业科学,2005,38(3):498 -503.]
[19]Xue Lihong,Cao Weixing,Luo Weihong,et al.Relationship between Spectral Vegetation Indices and LAI in Rice[J].Acta Phytoecologica Sinica,2004,28(1):47-52.[薛利红,曹卫星,罗卫红,等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报,2004,28(1):47-52.]
[20]Wang Jihua,Wang Zhijie,Huang Wenjiang,et al.The Vertical Distribution Characteristic and Spectral Response of Canopy Nitrogen in Different Layer of Winter Wheat[J].Journal of Remote Sensing,2004,8(4):309-316.[王纪华,王之杰,黄文江,等.冬小麦冠层氮素的垂直分布及光谱响应[J].遥感学报,2004,8(4):309-316.]
[21]Broge N H,Leblanc E.Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density[J].Remote Sensing of Environment,2001,76:156-172.
[22]Anatoly A G,Timothy J A,Donald C R,et al.Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies[J].Geophysical Research Letters,2003,30(5):1248-1255.
[23]Osborne C P,Woodward F I.Biological Mechanisms Underlying Recent Increases in the NDVI of Mediterranean Shrublands[J].International Journal of Remote Sensing,2001,22(10):1895-1907.
[24]Demetriades-Shah.High Resolution Derivative Spectra in Remote Sensing[J].Remote Sensing of Environment,1990,33(1):55-64.
[25]Miller J R.Quantitative Characterization of the Vegetation red Edge Reflectance.1.an Inverted Gaussian Reflectance model[J].International Journal of Remote Sensing,1990,11:1775-1795.
[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[5] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[6] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[7] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[8] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[9] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[10] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[11] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[12] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[13] 王恒,杨昊翔,张丽. 海上丝绸之路沿线区域植被覆盖变化特征[J]. 遥感技术与应用, 2018, 33(4): 703-712.
[14] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[15] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.