Please wait a minute...
img

官方微信

遥感技术与应用  2010, Vol. 25 Issue (2): 183-188    DOI: 10.11873/j.issn.1004-0323.2010.2.183
研究与应用     
基于TSEB平行模型的黄土丘陵沟壑区蒸散发遥感估算

潘竟虎1,2,刘春雨1
1.西北师范大学地理与环境科学学院,甘肃 兰州 730070;
2.兰州大学资源环境学院,甘肃 兰州 730000
Retrieving Evapotranspiation of Loess Hilly-gully Region Using TSEB Parallel Model Based on Remote Sensing Image
PAN Jing-hu1,2,LIU Chun-yu1
1.College of Geographic and Environmental Science,Northwest Normal University,Lanzhou 730070,China;
2.College of Resource and Environmental Science,Lanzhou University,Lanzhou 730000,China
 全文: PDF(2215 KB)  
摘要:

复杂地形条件下和干旱半干旱植被稀疏条件下的蒸散发遥感估算一直是蒸散发区域遥感估算的难点、热点问题。针对黄土丘陵沟壑区地表起伏、覆被不均一、植被稀疏的特征,选择陕甘交界区为研究区,利用Landsat TM资料求取地表特征参数和地表能量平衡各参量,采用TSEB平行模型反演出该区域的瞬时土壤蒸发、植被蒸腾和土壤—植被总蒸散发量,经过尺度转换,得到日蒸散量;并利用附加阻抗法和FAO Penman-Monteith公式计算实际蒸散发,对TSEB平行模型法遥感估算结果进行了间接精度评价,比较验证结果表明TSEB平行模型法估算的蒸散发结果合理,精高较高。

关键词: 蒸散发TSEB模型遥感黄土丘陵沟壑区    
Abstract:

Evapotranspiation retrievals in conditions of rugged terrain and arid/semiarid sparse vegetation are always the hotspot in estimation of regional evapotranspiration from remote sensing images.Concerning with the complex characteristics of the loess hilly-gully region,such as undulating topography,un-unique land use/covers and less vegetated land surface,etc,land surface characteristic parameters and flux was retrieved,and the instantaneous vegetation transpiration and soil evaporation was estimated with the TSEB parallel model by using the Landsat TM data for an experimental study site located on the conjuncture area of Shaanxi and Gansu where the terrain surface is very undulating with less vegetation developed,heavy soil and water loss loess plateau.And then the calculated result was merged into daily evapotranspiration,also the spatial pattern of the daily evapotranspiration was analyzed.Actual evapotranspiration of the study area was calculated with the extra resistance method and Penman-Monteith equation to compare with the TSEB parallel model estimated,which suggested that the TSEB parallel model can be used for the accurate estimation of evapotranspiration in loess hilly-gully region.

Key words: Evapotranspiration    TSEB model    Remote sensing    Loess hilly-gully region
收稿日期: 2009-10-29 出版日期: 2010-10-19
基金资助:

国家自然科学基金项目(40961026);甘肃省自然科学基金项目(0710RJZA104);西北师范大学知识与科技创新工程项目(NWNU-KJCXGC-03-60)。

作者简介: 潘竟虎(1974-),男,讲师,博士研究生,研究方向为环境遥感与GIS应用。E-mail:panjh_nwnu@nwnu.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘竟虎
刘春雨

引用本文:

潘竟虎, 刘春雨. 基于TSEB平行模型的黄土丘陵沟壑区蒸散发遥感估算[J]. 遥感技术与应用, 2010, 25(2): 183-188.

PAN Jing-hu, LIU Chun-yu. Retrieving Evapotranspiation of Loess Hilly-gully Region Using TSEB Parallel Model Based on Remote Sensing Image. Remote Sensing Technology and Application, 2010, 25(2): 183-188.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2010.2.183        http://www.rsta.ac.cn/CN/Y2010/V25/I2/183

[1]Zhou Jian,Cheng Guodong,Li Xin,et al.Application of Remote Sensing Technology to Estimate River Basin Evapotranspiration[J].Journal of Hydraulic Engineering,2009,40(6):679-686.[周剑,程国栋,李新,等.应用遥感技术反演流域尺度的蒸散发[J].水利学报,2009,40(6):679-686.]
[2]Yi Yonghong,Yang Dawen,Liu Yu,et al.Review of Study on Regional Evapotranspiration Modeling Based on Remote Sensing[J].Journal of Hydraulic Engineering,2008,39(9):1118-1124.[易永红,杨大文,刘钰,等.区域蒸散发遥感模型研究的进展[J].水利学报,2008,39(9):1118-1124.]
[3]Norman J M,Kustas W P,Humes K S.Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature[J].Agricultural and Forest Meteorology,1995,77(3):263-293.
[4]Murray T,Verhoef A.Moving towards a More Mechanistic Approach in the Determination of Soil Heat Flux from Remote Measurements[J].Agricultural and Forest Meteorology,2007,147(1):80-97.
[5]Li F,Kustas W P,Prueger J H,et al.Utility of Remote Sensing Based Two-source Energy Balance Model under Low and High Vegetation Cover Conditions[J].Journal of Hydrometeorology,2005,6(6):878-891.
[6]Zhang Wanchang,Gao Yongnian.Estimation of Regional Evapotranspiration Using Two Source Energy Balance Model and ETM+ Imagery[J].Scientia Geographica Sinica,2009,29(4):523-528.[张万昌,高永年.区域土壤植被系统蒸散发二源遥感估算[J].地理科学,2009,29(4):523-528.]
[7]Qin Chun,Wang Jian.Improved CIVCO Topographic Correction Model and Application[J].Remote Sensing Technology and Application,2008,23(1):82-87.[秦春,王建.CIVCO地形校正模型的改进及其应用[J].遥感技术与应用,2008,23(1):82-87.]
[8]Pan Jinghu,Feng Zhaodong,Xiang Denian,et al.Analysis on Thermal Environment Effect of Land Use Type and Pattern in Valley City--A Case Study of Lanzhou City[J].Remote Sensing Technology and Application,2008,23(2):202-207.[潘竟虎,冯兆东,相得年,等.河谷型城市土地利用类型及格局的热环境效应遥感分析[J].遥感技术与应用,2008,23(2):202-207.]
[9]Zheng Yuanrun,Zhou Guangsheng.A Forest Vegetation NPP Model Based on NDVI[J].Chinese Journal of Plant Ecology,2000,23(1):9-12.[郑元润,周广胜.基于NDVI的中国天然森林植被净第一性生产力模型[J].植物生态学报,2000,23(1):9-12.]
[10]Kustas W P,Norman J M.Evaluation of Soil and Vegetation Heat Flux Predictions Using a Simple Two-source Model with Radiometric Temperatures for Partial Canopy Cover[J].Agric.for.Meteorol,1999,94(1):13-29.
[11]Anderson M C,Norman J M,Diak G R,et al.A Two-source Time-integrated Model for Estimating Surface Fluxes from Thermal Infrared Satellite Observations[J].Remote Sensing of Environment,1997,60(2):195-216.
[12]Liang S L.Narrowband to Broadband Conversions of Land Surface Albedo:I.Algorithms[J].Remote Sensing of Environment,2000,76(2):213-238.
[13]Bastiaanssen W G M.SEBAL-based Sensible and Latent Heat Fluxes in the Irrigated Gediz Basin,Turkey[J].Journal of Hydrology,2000 229(1):87-101.
[14]Liu Yani,Wu Jianjun,Xia Hong,et al.Summary of Two-layer Models on Estimating Evapotranspiration Using Quantitative Parameters Derived from Remote Sensing[J].Arid Land Geography,2005,28(1):65-71.[刘雅妮,武建军,夏虹,等.地表蒸散遥感反演双层模型的研究方法综述[J].干旱区地理,2005,28(1):65-71.]
[15]Priestly C H B,Taylor R J.On the Assessment of Surface Heat Flux and Evaporation Using Large-scale Parameters.Mon[J].Weather Rev.,1972,100:81-92.
[16]Hansen L B,Kamstrup N,Hansen B U.Estimation of Net Shortwave Radiation by the Use of Remote Sensing and a Digital Elevation Model--A Case Study of a High Arctic Mountainous Area[J].Int.J.Remote Sen.,2002,23(21):4699-4718.
[17]Dozier H,Frew J.Rapid Calculation of Terrain Parameters for Radiation Modeling from Digital Elevation Data[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(5):963-969.
[18]Liang S L.Narrow Band to Broad Band Conversions of Land Surface Albedo:I Algorithms[J].Remote Sensing of Environment,2000,76(2):213-238.
[19]Pan Jinghu,Liu Chunyu.Retrieving Evapotranspiration of Small Watershed in Loess Hilly-gully Region Based on Remote Sensing Image:Taking Weigou Watershed as a Case Study[J].Journal of Northwest Normal University(Natural Science),2008,44(5):88-93.[潘竟虎,刘春雨.黄土丘陵沟壑区小流域蒸散发的遥感估算[J].西北师范大学学报(自然科学版),2008,44(5):88-93.]
[20]Su Z.The Surface Energy Balance System (SEBS) of Estimation of Turbulent Heat Fluxes[J].Hydrology and Earth System Science,2002,6(1):85-99.
[21]Businger J A.A Note on the Businger-dyer Profiles[J].Boundary-layer Meteorology,1988,42(1-2):145-151.
[22]Biftu G F,Gan T Y.A Semi-distributed,Physics-based Hydrologic Model Using Remotely Sensed and Digital Terrain Elevation Data for Semi-arid Catchments[J].Int.J.Remote Sen.,2004,25(20):4351-4379.
[23]De Bruin H A R.From Penman to Makkink[C]//Proceedings and Information:TNO Committee on Hydrological Research,Gravenhage,the Netherlands,1987,39:5-31.
[24]Li F Q,Lyons T J.Remote Estimation of Regional Evapotranspiration[J].Environ.Model.& Softw,2002,17(1):61-75.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.