Please wait a minute...
img

官方微信

遥感技术与应用  2010, Vol. 25 Issue (2): 288-295    DOI: 10.11873/j.issn.1004-0323.2010.2.288
综述     
氧气A吸收带大气遥感应用研究进展

张 岩,段民征,韩志刚,吕达仁
中国科学院大气物理研究所,北京 100029
Review of Oxygen A-Band Research

ZHANG Yan,DUAN Min-zheng,HANG Zhi-gang,LV Da-ren
Institute of Atmospheric Physics,Chinese Academy of Sciences,LAGEO,Beijing 100029,China
 全文: PDF(1178 KB)  
摘要:

位于可见光波谱的氧气A吸收带具有独特的谱线结构,随波长或仪器分辨率的变化表现出不同的光谱特性。因而从20世纪60年代到现在,氧气A吸收带在遥感中的应用一直是国外学者研究的热点。总结了业已取得的成果和未来应用的发展方向并分析了其潜在探测能力,希望能够引起国内相关学者的重视,为我国氧气A带探测技术的应用与发展提供理论基础。

关键词: 氧气A吸收带遥感研究进展    
Abstract:

The oxygen A\|band,located in the visible and near\|infrared spectrum,demonstrates different spectral characteristics with the changes of wavelength and resolution.During the last several decades,great efforts have been affording to the research of its application for remote sensing.In this paper,the current and potential applications of oxygen A\|band are reviewed.Furthermore,the noticeable achievements in different areas and the trends of development in the future are summarized.It is hoped that the attention of atmospheric remote sensing community and the development of these fields would be aroused in China.

Key words: Oxygen A-band    Remote sensing    Review
收稿日期: 2009-09-23 出版日期: 2010-10-19
基金资助:

国家自然科学基金资助项目(40675018、40775026)。

作者简介: 张岩(1982-),男,博士研究生,主要从事大气中云参数卫星遥感方面的研究。E-mail:zhang_yan11_1982@mail.iap.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
??岩
段民征
韩志刚
吕达仁

引用本文:

张 岩,段民征, 韩志刚, 吕达仁. 氧气A吸收带大气遥感应用研究进展[J]. 遥感技术与应用, 2010, 25(2): 288-295.

ZHANG Yan, DUAN Min-zheng, HAN Zhi-gang, LV Da-ren. Review of Oxygen A-Band Research
. Remote Sensing Technology and Application, 2010, 25(2): 288-295.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2010.2.288        http://www.rsta.ac.cn/CN/Y2010/V25/I2/288

[1]TIROS:The System and Its Evolution[R].ATSS-AC/Contractor Reports Unit,Scientific and Technical Information Division,1965,Washington D.C.
[2]Babcock H D.Study of the Infra-red Solar Spectrum with the Interferometer[J].Astrophysical Journal,1927,65:140-163.
[3]Dieke G H,Babcock H D.The Structure of the Atmospheric Absorption Bands of Oxygen[J].Proceedings of the National Academy of Sciences of the United States of America,1927,13:670-678.
[4]Hanel R A.Determination of Cloud Altitude from a Satellite[J].Journal of Geophysical Research,1961,66:1300.
[5]Yamamoto G,Wark D Q.Discussion of the Letter by RA Hanel,"Determination of Cloud Altitude from a Satellite"[J].Journal of Geophysical Research,1961,66:3596.
[6]Chapman R M.Cloud Distributions and Altitude Profiles from a Satellite[J].Planetary and Space Science,1962,9:70-71.
[7]Wark D Q,Mercer D M.Absorption in the Atmosphere by the Oxygen "A" Band[J].Applied Optics,1965,4:839-845.
[8]Saiedy F,Hilleary D T,Morgan W A.Cloud-top Altitude Measurements from Satellites[J].Applied Optics,1965,4:495-500.
[9]Saiedy F,Jacobowitz H,Wark D Q.On Cloud-top Determination from Gemini-5[J].Journal of the Atmospheric Sciences,1967,24:63-69.
[10]Adiks T G,Georgiyevskiy Y U S,Malkevich M S,et al.Atmosphere Transmission in the 0.76 m 02 Band,Academy of Sciences[J].USSR.Izv.,Atmospheric and Oceanic Physics,1972,8:369-381.
[11]Curran R J,Kyle H L,Blaine L R,et al.Multichannel Scanning Radiometer for Remote Sensing Cloud Physical Parameters[J].Review of Scientific Instruments,1981,52:1546.
[12]Gorodetskiy A K,Malkevich M S,Syachinov V I.Determination of Cloud Heights from Kosmos 320 Measurements[J].USSR.Izv.,Atmospheric and Oceanic Physics,1971,200:588-590.
[13]Malkevich M S,Chagar L U,Shukurov A K H.Corrections for Scattering of Radiation in Clouds in Photometric Cloud-height Determination[J].USSR,Izvestiya,Atmospheric and Oceanic Physics,1976,11:561-564.
[14]Wu M L.Remote Sensing of Cloud-top Pressure Using Reflected Solar Radiation in the Oxygen A-band [J].Journal of Applied Meteorology,1985,24:539-546.
[15]King M D.Determination of the Scaled Optical Thickness of Clouds from Reflected Solar Radiation Measurements[J].Journal of the Atmospheric Sciences,1987,44:1734-1751.
[16]Kokhanovsky A A,Rozanov V V.The Physical Parameterization of the Top-of-atmosphere Reflection Function for a Cloudy Atmosphere--Underlying Surface System:The Oxygen A-band Case Study[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2004,85:35-55.
[17]Nakajima T,King M D.Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements.Part I:Theory[J].Journal of the Atmospheric Sciences,1990,47:1878-1893.
[18]Fischer J,Cordes W,Schmitz-peiffer A,et al.Detection of Cloud-top Height from Backscattered Radiances within the Oxygen A Band.Part 2:Measurements[J].Journal of Applied Meteorology,1991,30:1260-1267.
[19]Fischer J,Grassl H.Detection of Cloud-top Height from Backscattered Radiances within the Oxygen A Band.Part 1:Theoretical Study[J].Journal of Applied Meteorology,1991,30:1245-1259.
[20]Cloud Top Pressure,MERIS Algorithm Theoretical Basis Document No ATBD 2.3[R].Free University of Berlin,Berlin,2000.
[21]Kuze A,Chance K V.Analysis of Cloud Top Height and Cloud Coverage from Satellites Using the O2  A and B Bands[J].Journal of Geophysical Research,1994,99:14481-14491.
[22]Koelemeijer R B A,Stammes P,Hovenier J W,et al.A Fast Method for Retrieval of Cloud Parameters Using Oxygen A Band Measurements from the Global Ozone Monitoring Experiment[J].Journal of Geophysical Research,2001,106:3475-3490.
[23]Wang P,Stammes P,van der A R,et al.FRESCO+:An Improved O2 A-band Cloud Retrieval Algorithm for Tropospheric Trace Gas Retrievals[J].Atmospheric Chemistry and Physics,2008,8:6565-6576.
[24]Rozanov V V,Kokhanovsky A A.Semianalytical Cloud Retrieval Algorithm as Applied to the Cloud Top Altitude and the Cloud Geometrical Thickness Determination from Top-of-atmosphere Reflectance Measurements in the Oxygen A-band[J].Journal of Geophysical Research-atmospheres,2004,109,10.1029/2003JD004104.
[25]Preusker R,Fischer J,Albert P,et al.Cloud-top Pressure Retrieval Using the Oxygen A-band in the IRS-3 MOS Instrument[J].International Journal of Remote Sensing,2007,28:1957-1967.
[26]Lindstrot R,Preusker R,Ruhtz T,et al.Validation of MERIS Cloud-top Pressure Using Airborne Lidar Measurements[J].Journal of Applied Meteorology and Climatology,2006,45:1612-1621.
[27]Kokhanovsky A A,Rozanov V V,Nauss T,et al.The Semianalytical Cloud Retrieval Algorithm for SCIAMACHY - I.The Validation[J].Atmospheric Chemistry and Physics,2006,6:1905-1911.
[28]Kokhanovsky A A,Von Hoyningen-Huene W,Rozanov VV,et al.The Semianalytical Cloud Retrieval Algorithm for SCIAMACHY - II.The Application to MERIS and SCIAMACHY Data[J].Atmospheric Chemistry and Physics,2006,6:4129-4136.
[29]Naud C,Mitchell K L,Muller J P,et al.Comparison between ATSR-2 Stereo,MOS O2 A-band and Ground-based Cloud Top Heights[J].International Journal of Remote Sensing,2007,28:1969-1987.
[30]Bartonij J,Scott J C.Remote Measurement of Surface Pressure Using Absorption in the Oxygen A-band[J].Applied Optics,1986,25:3502-3507.
[31]Mitchell R M,Obrien D M.Error-estimates for Passive Satellite Measurement of Surface Pressure Using Absorption in the A-band of Oxygen[J].Journal of the Atmospheric Sciences,1987,44:1981-1990.
[32]Breon FM,Bouffies S.Land Surface Pressure Estimate from Measurements in the Oxygen A Absorption Band[J].Journal of Applied Meteorology,1996,35:69-77.
[33]Van Diedenhoven B,Hasekamp O P,Aben I.Surface Pressure Retrieval from SCIAMACHY Measurements in the O2 A-band:Validation of the Measurements and Sensitivity on Aerosols[J].Atmospheric Chemistry and Physics,2005,5:2109-2120.
[34]Dubuisson P,Borde R,Schmechtig C,et al.Surface Pressure Estimates from Satellite Data in the Oxygen A-band:Applications to the MOS Sensor over Land[J].Journal of Geophysical Research-atmospheres,2001,106:27277-27286.
[35]Kokhanovsky A A,Rozanov V V.Cloud Bottom Altitude Determination from a Satellite[J].IEEE Geoscience and Remote Sensing Letters,2005,2:280-283.
[36]Rozanov V V,Kokhanovsky A A.Determination of Cloud Geometrical Thickness Using Backscattered Solar Light in a Gaseous Absorption Band[J].IEEE Geoscience and Remote Sensing Letters,2006,3:250-253.
[37]Badaev V V,Malkevich M S.On the Possibility of Determining the Vertical Profiles of Aerosol Attenuation Using Satellite Measurements of Reflected Radiation in the 0.76 Micron Oxygen Band[J].USSR.Izv.,Atmospheric and Oceanic Physics,1979,14:722-727.
[38]Gabella M,Guzzi R,Kisselev V,et al.Retrieval of Aerosol Profile Variations in the Visible and Near Infrared:Theory and Application of the Single-scattering Approach[J].Applied Optics,1997,36:1328-1336.
[39]Gabella M,Kisselev V,Perona G.Retrieval of Aerosol Profile Variations from Reflected Radiation in the Oxygen Absorption A-band[J].Applied Optics,1999,38:3190-3195.
[40]Corradini S,Cervino M.Aerosol Extinction Coefficient Profile Retrieval in the Oxygen A-band Considering ,Multiple Scattering Atmosphere.Test Case:SCIAMACHY Nadir Simulated Measurements[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2006,97:354-380.
[41]Boesche E,Stammes P,Preusker R,et al.Polarization of Skylight in the O2 A-band:Effects of Aerosol Properties[J].Applied Optics,2008,47:3467-3480.
[42]Veitel H,Funk O,Kurz C,et al.Geometrical Path Length Probability Density Functions of the Skylight Transmitted by Midlatitude Cloudy Skies:Some Case Studies[J].Geophysical Research Letters,1998;25:3355-3358.
[43]Dubuisson P,Frouin R,Dessailly D,et al.Estimating the Altitude of Aerosol Plumes over the Ocean from Reflectance Ratio Measurements in the O2 A-band[J].Remote Sensing of Environment,2009,113:1899-1911.
[44]Korb C L,Schwemmer G K,Dombrowski M,et al.Airborne and Ground Based Lidar Measurements of the Atmospheric-pressure Profile[J].Applied Optics,1989,28:3015-3020.
[45]Korb C L,Weng C Y.A Theoretical Study of a Two-wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles[J].Journal of Applied Meteorology,1982,21:1346-1355.
[46]Dianov-Klokov V I,Kropotkina E P,Malkov I P,et al.Absorption Band Deformation and the Effective Pathlength in Clouds[J].1970,9:780-789.
[47]Grechko E I.Measuring the Difference in Effective Paths at Two Wavelengths in the Presence of Reflection of Light by Clouds[J].USSR,Izv.,Atmospheric and Oceanic Physics,1979,14:479-481.
[48]Grechko Y I,Dianov-Klokov V I,Malkov I P.Aircraft Measurements of Photon Paths in Reflection and Transmission of Light by Clouds in the 0.76 μm Oxygen Band[J].USSR,Izv.,Atmospheric and Oceanic Physics,1973,9:262-265.
[49]Min Q,Harrison L C,Clothiaux E E.Joint Statistics of Photon Path Length and Cloud Optical Depth:Case Studies[J].Journal of Geophysical Research-atmospheres,2001,106:7375-7385.
[50]Min Q,Harrison L.Joint Statistics of Photon Pathlength and Cloud Optical Depth[J].Geophysical Research Letters,1999,26:1425-1428.
[51]Pfeilsticker K,Erie F,Funk O,et al.First Geometrical Pathlengths Probability Density Function Derivation of the Skylight from Spectroscopically Highly Resolving Oxygen A-band Observations 1.Measurement Technique,Atmospheric Observations and Model Calculations[J].Journal of Geophysical Research,1998,103:4101-4116.
[52]Heidinger A K,Stephens G L.Molecular Line Absorption in a Scattering Atmosphere.Part III:Pathlength Characteristics and Effects of Spatially Heterogeneous Clouds[J].Journal of the Atmospheric Sciences,2002,59:1641-1654.
[53]Min Q L,Harrison L C,Kiedron P et al.A High-resolution Oxygen A-band and Water Vapor Band Spectrometer[J].Journal of Geophysical Research-atmospheres,2004,109,10,1029/2003JD003540.
[54]Scholl T,Pfeilsticker K,Davis A B,et al.Path Length Distributions for Solar Photons under Cloudy Skies:Comparison of Measured First and Second Moments with Predictions from Classical and Anomalous Diffusion Theories[J].Journal of Geophysical Research,2006,111:10.1029/2004JD005707.
[55]Davis A,Marshak A.Lévy Kinetics in Slab Geometry:Scaling of Transmission Probability[M].Novak MM:Singapore:World Scientific,1997.
[56]Davis A B,Marshak A.Space-time Characteristics of Light Transmitted through Dense Clouds:A Greens Function Analysis[J].Journal of the Atmospheric Sciences,2002,59:2713-2727.
[57]OBrien D M,Mitchell R M.Error-estimates for Retrieval of Cloud-top Pressure Using Absorption in the A-band of Oxygen[J].Journal of Applied Meteorology,1992,31:1179-1192.
[58]OBrien D M,Mitchell R M,English SA,et al.Airborne Measurements of Air Mass from O2 A-band Absorption Spectra[J].Journal of Atmospheric and Oceanic Technology,1998,15:1272-1286.
[59]Heidinger A K,Stephens G L.Molecular Line Absorption in a Scattering Atmosphere.Part II:Application to Remote Sensing in the O2 A-band[J].Journal of the Atmospheric Sciences,2000,57:1615-1634.
[60]Stephens G L,Heidinger A.Molecular Line Absorption in a Scattering Atmosphere.Part I:Theory[J].Journal of the Atmospheric Sciences,2000,57:1599-1614.
[61]Pitts M,Hostetler C,Poole L,et al.An Airborne A-band Spectrometer for Remote Sensing of Aerosol and Cloud Optical Properties[C]//Fujisada H,Lurie J B,Ropertz A,et al.eds.,Conference on Sensors,Systems,and Next-Generation Satellites IV,Spie-Int Soc Optical Engineering,Barcelona,Spain,2000,123-132.
[62]Min Q L,Harrison L C.Retrieval of Atmospheric Optical Depth Profiles from Downward-looking High-resolution O2 A-band Measurements:Optically Thin Conditions[J].Journal of the Atmospheric Sciences,2004,61:2469-2477.
[63]Yang Z,Wennberg P O,Cageao R P,et al.Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2005,90:309-321.
[64]Adiks T G,Dianov-Klolov V I.Molecular Parameterization of the O2 Absorption Band at 0.7609 m and Their Use in Calculating the Transmission Function[J].USSR.Izv.,Atmospheric and Oceanic Physics,1968,4:1052-1059.
[65]Burch D E,Gryvnak D A.Strengths,Widths,and Shapes of the Oxygen Lines near 13100 cm-1 (7620 ) [J].Applied Optics,1969,8:1493-1499.
[66]Miller J H,Boese R W,Giver L P.Intensity Measurements and Rotational Intensity Distribution for the Oxygen A-band[J].Journal of Quantitative Spectroscopy and Radiative Transfer,1969,9:1507-1517.
[67]Yamamoto G.Direct Absorption of Solar Radiation by Atmospheric Water Vapor,Carbon Dioxide and Molecular Oxygen[J].Journal of the Atmospheric Sciences,1962,19:182-188.
[68]Kiehl J T,Yamanouchi T.A Parameterization for Absorption Due to the A,B,and Gamma Oxygen Bands[J].Tellus,Series B-Chemical and Physical Meteorology,1985,37:1-6.
[69]Chou M D.Parameterizations for the Absorption of Solar-radiation by O2 and CO2 with Application to Climate Studies[J].Journal of Climate,1990,3:209-217.
[70]Hawks M R.Passive Ranging Using Atmospheric Oxygen Absorption Spectra[D].Air Force Institute of Technology,2005.
[71]Nakazawa T,Yamanouchi T,Tanaka M.Line Parameters of the Oxygen A-band and Calculation of the Atmospheric Transmission Functions for the A,B,and γ Bands[J].Journal of Quantitative Spectroscopy and Radiative Transfer,1982,27:615-625.
[72]Van Deelen R,Hasekamp O P,van Diedenhoven B,et al.Retrieval of Cloud Properties from Near-ultraviolet,Visible,and Near-infrared Satellite-based Earth Reflectivity Spectra:A Comparative Study[J].Journal of Geophysical Research,2008;113:10.1029/2007JD009129.
[73]Van Diedenhoven B,Hasekamp O P,Landgraf J.Retrieval of Cloud Parameters from Satellite-based Reflectance Measurements in the Ultraviolet and the Oxygen A-band[J].Journal of Geophysical Research,2007,112:10.1029/2006JD008155.

 

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.