Please wait a minute...
img

官方微信

遥感技术与应用  2010, Vol. 25 Issue (5): 695-699    DOI: 10.11873/j.issn.1004-0323.2010.5.695
研究与应用     
利用SVM与灰度共生矩阵从QuickBird 影像中提取枇杷信息

傅文杰1,林明森2
(1.莆田学院环境与生命科学系,福建 莆田351100; 2.国家卫星海洋应用中心,北京100081)
Study on Extracting of Loquat Information Using SVM and Gray-level Co-occurrence Matrix from QuickBird Image
FU Wen-jie1,LIN Ming-sen2
(1.Putian University,Putian 351100,China;2.National Satellite Ocean Application Service,Beijing 100081,China)
 全文: PDF(2733 KB)  
摘要:

以福建省莆田市东圳水库库区为例,采用QuickBird卫星影像,利用主成分分析方法对灰度共生矩阵方法提取的地物纹理特征进行筛选,选择最佳的影像纹理特征,组成新的波段组合,并应用支持向量机方法(Support Vector Machine,SVM)进行枇杷树的提取分类,最后与只依靠光谱信息来分类的SVM法分类结果进行比较,其分类总精度由原来的71.33%提高到了86.67%,Kappa系数也由原来的0.6410提高到了0.8293,分类精度明显提高,表明光谱信息加入纹理特征信息能辅助并提升高分辨率遥感枇杷树信息提取的精度。

关键词: 支持向量机灰度共生矩阵遥感;纹理枇杷    
Abstract:

We take Dongzhen Reservoir district of Putian as an example and present a methodology of exracting loquat information using support vector machine\|SVM and gray\|level co\|occurrence matrix from QuickBird image.Firstly,this paper calculating the textural measures using grey level co\|occurrence matrix and determining the optimum parameters for textural information by principal component analysis.Then the support vector machine was applied to classify the remote sensing imagery of the study area.Comparing with the result which depends only on spectrum information.The total classification accuracy for the former method has rised to 86.67% from 71.33%.Kappa coefficient change from 0.6410 to 0.8293.The increase of classification accuracy of exracting loquat information indicates that it is an effective method to fuse spectral and textural information on high\|resolution remote sensing classification.

Key words:  Support Vector Machine    Grey level co-    occurrence matri    ;Remote sensing    Texture    Loquat
收稿日期: 2010-06-20 出版日期: 2013-10-30
基金资助:

福建省科技厅青年人才项目(2006F3111);福建省教育厅A类项目(JA08205)。

作者简介: 傅文杰(1967-),男,博士,副教授,研究方向为遥感技术及GIS应用。E-mail:fwjfj@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
傅文杰
林明森

引用本文:

傅文杰, 林明森. 利用SVM与灰度共生矩阵从QuickBird 影像中提取枇杷信息[J]. 遥感技术与应用, 2010, 25(5): 695-699.

FU Wen-Jie, LIN Ming-Sen. Study on Extracting of Loquat Information Using SVM and Gray-level Co-occurrence Matrix from QuickBird Image. Remote Sensing Technology and Application, 2010, 25(5): 695-699.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2010.5.695        http://www.rsta.ac.cn/CN/Y2010/V25/I5/695

[1]Yang Zhigang.Classification of Remote Sensing Imagery with Texture Information[D].Nanjing:Nanjing Forestry University,2006.[杨志刚.纹理信息在遥感影像分类中的应用[D].南京林业大学(博士论文),2006.]
[2]Huang Huiping,Wu Bingfang,Li Miaomiao,et al.Detecting Urban Vegetation Efficiently with High Resolution Remote Sensing Data[J].Journal of Remote Sensing,2004,8(1):68-74.[黄慧萍,吴炳方,李苗苗,等.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004,8(1):68-74.]
[3]Yan Meichun,Zhang Youjing,Bao Yansong.Deriving Bamboos from IKONOS Image by Texture Information[J].Remote Sensing Information,2004,(2):31-34.[颜梅春,张友静,鲍艳松.基于灰度共生矩阵法的IKONOS影像中竹林信息提取[J].遥感信息,2004,(2):31-34.]
[4]Tang Jingtian,Hu Dan,Gong Zhimin.Research on the Classification of SVM Based Image Texture Features[J].Computer Engineering&Science,2008,30(8):44-48.[汤井田,胡丹,龚智敏.基于SVM的图像纹理特征分类研究[J].计算机工程与科学,2008,30(8):44-48.]
[5]Han Ning,Zhang Xiuying,Wang Xiaoming,et al.Identification of Distributional Information Torreya Grandis Merrlllii Using High Resolution Imagery[J].Journal of Zhejiang University(Engineering Science),2010,44(3):420-425.[韩凝,张秀英,王小明,等.高分辨率影像香榧树分布信息提取[J].浙江大学学报(工学版) ,2010,44(3):420-425.]
[6]Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
[7]Vapnik V N.Statistical Learning Theory[M].New York:Wiley,1998.
[8]Haralick R,Shanmugam K,Dinstain I.Texture Feature Image for Classification[J].IEEE Tranctions on Systems,Man and Cybermatics,1973,3(6):610-621.
[9]Yu Kunyong,Liu Jian,Xu Zhanghua,et al.Study on Bamboo Resources Thematic Information Extraction in the South of China[J].Remote Sensing Technology and Application,2009,24(4):449-455.[余坤勇,刘健,许章华,等.南方地区竹资源专题信息提取研究[J].遥感技术与应用,2009,24(4):449-455.]
[10]Fabio D A,Paolo G.Texture Based Characterization of Urban Environments on Satellite SAR Images[J].IEEE Tranctions on Geoscience and Remote Sensing,2003,41(1):153-159.
[11]Hsu C W,Chang C C,Lin C J.A Practical Guide to Support Vector Classification[EB/OL].http://www.csie.ntu.edu.tw/~cjlin/.
[12]Marceau D J,Howarth P J ,Dubois J M,et al.Evaluation of the Gray-level Co-occurrence Matrix Method for Land-cover Classification Using SPOT Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):513-519.

[1] 刘倩,胡心雨,李晓彤,覃先林. 一种像素与对象相结合的林区建筑物识别方法[J]. 遥感技术与应用, 2021, 36(6): 1350-1357.
[2] 徐红涛,陈春波,郑宏伟,罗格平,杨辽,王伟胜,吴世新. 集成建模变量优选和参数学习的SVR盐渍化监测[J]. 遥感技术与应用, 2021, 36(1): 176-186.
[3] 陈继龙,魏雪馨,刘洋,闵庆文,刘荣高,张文林,郭春梅. 基于多时相遥感观测的板栗林分布提取研究[J]. 遥感技术与应用, 2020, 35(5): 1226-1236.
[4] 李净,温松楠. 基于3种机器学习法的太阳辐射模拟研究[J]. 遥感技术与应用, 2020, 35(3): 615-622.
[5] 李哲,张沁雨,彭道黎. 基于高分二号遥感影像的树种分类方法[J]. 遥感技术与应用, 2019, 34(5): 970-982.
[6] 牟多铎, 刘磊. ELM与SVM在高光谱遥感图像监督分类中的比较研究[J]. 遥感技术与应用, 2019, 34(1): 115-124.
[7] 谷晓天, 高小红, 马慧娟, 史飞飞, 刘雪梅, 曹晓敏. 复杂地形区土地利用/土地覆被分类机器学习方法比较研究[J]. 遥感技术与应用, 2019, 34(1): 57-67.
[8] 杨朦朦,汪汇兵,欧阳斯达,范奎奎,戚凯丽. 基于双树复小波分解的BP神经网络遥感影像分类[J]. 遥感技术与应用, 2018, 33(2): 313-320.
[9] 熊伟,徐永力,姚力波,崔亚奇. 基于SVM的高分辨率SAR图像舰船目标检测算法[J]. 遥感技术与应用, 2018, 33(1): 119-127.
[10] 陈洋波,张涛,窦鹏,董礼明,陈华. 基于SVM的东莞市土地利用/覆被自动分类误差来源与后处理[J]. 遥感技术与应用, 2017, 32(5): 893-903.
[11] 胡根生,吴问天,黄文江,梁栋,黄林生. 粒子群优化的最小二乘支持向量机在小麦白粉病监测中的应用[J]. 遥感技术与应用, 2017, 32(2): 299-304.
[12] 史飞飞,高小红,杨灵玉,何林华,贾伟. 基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究[J]. 遥感技术与应用, 2017, 32(2): 206-217.
[13] 鲍蕊,夏俊士,薛朝辉,杜培军,车美琴. 基于形态学属性剖面的高光谱影像集成分类[J]. 遥感技术与应用, 2016, 31(4): 731-738.
[14] 赵玉,王红,张珍珍. 基于遥感光谱和空间变量随机森林的黄河三角洲刺槐林健康等级分类[J]. 遥感技术与应用, 2016, 31(2): 359-367.
[15] 林志垒,晏路明. 高光谱影像的BDT-SVM地物分类算法与应用[J]. 遥感技术与应用, 2016, 31(1): 177-185.