Please wait a minute...
img

官方微信

遥感技术与应用  2010, Vol. 25 Issue (5): 700-706    DOI: 10.11873/j.issn.1004-0323.2010.5.700
研究与应用     
一种利用HJ\|1B 红外相机数据自动识别林火的方法
覃先林1,张子辉2,李增元1
(1.中国林业科学研究院资源信息研究所,林业遥感与信息技术重点开放实验室,北京100091;2.国家林业局森林防火预警监测信息中心,北京100714)
An Automatic Forest Fires Identification Method Using HJ-1B IRS Data
QIN Xian-lin1,ZHANG Zi-hui2,LI Zeng-yuan1
 (1.Research Institute of Forest Resource Information Techniques,State Laboratory for
Remote Sensing and Information Techniques,CAF,Beijing 100091,China;
2.Information Center of Forest Prediction and Monitoring,State Forestry Administration,Beijing 100714,China)
 全文: PDF(2317 KB)  
摘要:

森林火灾是一种世界性的重要自然灾害,它分布广、发生频度高,破坏森林资源,干扰人民正常生活秩序,造成全球性环境污染,越来越受到各国政府的重视。环境减灾1B卫星上的红外相机(简称HJ\|1B IRS),其空间分辨率提高到了150 m,高温饱和点达到了500 K,是国内目前卫星上可探测地表温度最高的相机。在对HJ\|1B IRS数据相关波段进行抽样统计分析基础上,针对HJ\|1B IRS数据各波段特性,采用自适应的劈窗检测算法识别林火;在IDL语言环境下,实现了基于HJ\|1B IRS和背景信息集成的林火自动识别算法程序。同时,通过近1 a的试运行,并选取发生在东北林区和南方林区的森林火灾为验证案例,对算法及其监测精度进行验证。验证结果表明:该方法的判对率达到了90%以上,遗失率都低于10%,错判率为0,该方法基本能满足我国林火监测业务的精度要求。

关键词: HJ-1B红外多光谱成像仪森林火灾遥感    
Abstract:

Forest fire is a kind of worldwide natural calamity.It is extensively distributed with high occurrence frequency and destroys forest resources thus disturbing normal living order of people and leading to environmental deterioration.The Infrared Sensor carried by HJ\|1B (HJ\|1B IRS),its spatial resolution is 150 m and saturation temperature is more than 500 K.Its the only camera,which have been carried by Chinese satellite,to detect highest surface temperature in China at present.In this study,basing on analyzing the information of related bands of HJ\|1B IRS by using sampling method,an adapted windows thread condition forest fire identification methodology has been developed according to the character of HJ\|1B IRS.The automatic forest fire identification program has been developed by using HJ\|1B IRS Image and integration of background GIS data in IDL language.At the same time,by operating the program nearly one year,the fire identification method and identification results of precision have been validated by selecting the typical forest fires which have been taken place in northeast or south forest region of China.The validation results show that the truth precision is more than 90%,the missing identification precision low than 10%,but error is 0.So,the fire identification methodology can be satisfied the need for fire identification operation in China.

Key words:  HJ-1B    IRS image    Forest fire    Remote sensing
收稿日期: 2010-02-08 出版日期: 2013-10-30
基金资助:

中国林业科学研究院科研基金项目(CAFYBB2007003)、国家863计划项目和国家“十一五”科技计划课题(2006BAD23B04)共同资助.

作者简介: 覃先林(1969-),男,博士,副研究员,硕士生导师,主要从事森林覆盖变化及林火预警监测技术研究。E-mail:noaags@caf.ac.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
覃先林
张子辉
李增元

引用本文:

覃先林, 张子辉, 李增元. 一种利用HJ\|1B 红外相机数据自动识别林火的方法[J]. 遥感技术与应用, 2010, 25(5): 700-706.

QIN Xian-Lin, ZHANG Zi-Hui, LI Zeng-Yuan. An Automatic Forest Fires Identification Method Using HJ-1B IRS Data. Remote Sensing Technology and Application, 2010, 25(5): 700-706.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2010.5.700        http://www.rsta.ac.cn/CN/Y2010/V25/I5/700

[1]Dozier J.A Method for Satellite Identification of Surface Te-mperature Fields of Subpixel Resolution[J].Remote Sensing of Environment,1981,11:221-229.
[2]Matson M,Dozier J.Identification of Subresolution High Te-mperature Sources Using a Thermal IR Sensor[J].Photogrammetric Engineering and Remote Sensing,1981,47:1311-1318.
[3]Giglio L,Kendall J D,Justice C O.Evaluation of Global Fire Detection Algorithms Using Simulated AVHRR Infrared Data[J].International Journal of Remote Sensing,1999,20:1947-1985.
[4]Stroppiana D,Pinnock S,Gregoire J M.The Global Fire Product:Daily Fire Occurrence from April 1992 to December 1993 Derived from NOAA AVHRR Data[J].International Journal of Remote Sensing,2000,21:1279-1288.
[5]Ichoku C,Kaufmay Y J,Glaglio L,et al.Comparative Analysis of Daytime Fire Detection Algorithms Using AVHRR Data for the 1995 Fire Season in Canada:Perspective for MODIS[J].International Journal of Remote Sensing,2003,24(8):1669-1690.
[6]Fang M,Huang W.Tracking the Indonesian Forest Fire Using NOAA/AVHRR Images[J].International Journal of Remote Sensing,1998,19(3):387-390.
[7]Kaufman Y J,Herring  D D,Ranson K J,et al.Earth Observing System AM1 Mission to Earth[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36:1045-1055.
[8]Kaufman Y J,Justice C O,Flynn L P,et al.Potential Global Fire Monitoring from EOS-MODIS[J].Journal of Geophysical Research,1998,103:32215-32238.
[9]Justice C O,Giglio L,Korontzi S,et al.The MODIS Fire Pr-oducts[J].Remote Sensing of Environment,2002,83:244-262.
[10]Kaufman Y J,Ichoku C,Korontzi S,et al.Fire and Smoke Observed from the Earth Observing System MODIS Instrument Production and Operational Use[J].International Journal of Remote Sensing,2003,24(8):1765-1781.
[11]Giglio L,Descloitres J,Justice C O,et al.An Enhanced Contextual Fire Detection Algorithm for MODIS[J].Remote Sensing of Environment,2003,87:273-282.
[12]Qin Xianlin,Yi Haoruo.A Method to Identify Forest Fire Ba-sed on MODIS Data[J].Fire Safety Science,2004,13(2):83-89.[覃先林,易浩若.基于MODIS数据的林火识别方法研究[J].火灾科学,2004,13(2):83-89.]
[13]Arino O,Rosaz J.1999,1997 and 1998 World ATSR Fire Atlas Using ERS-1 ATSR-2 Data[C]//Proceedings of the Joint Fire Science Conference,Boise,1999,15-17.
[14]Arino O,Rosaz J.2000,1997 World ATSR Fire Atlas,IUF-RO[C]//Conference on Remote Sensing and Forest Monitoring,1-3 June 1999(Luxembourg:European Commission),606-615.
[15]Kelh V,Rauste Y,Hme T,et al.Combining AVH-RR and ATSR Satellite Sensor Data for Operational Boreal Forest Fire Detection[J].International Journal of Remote Sensing,2003,24(8):1691-1708.
[16]Qin Xianlin,Zhang Zihui,Li Zengyuan,et al.Northeast Forest Fi-res Identification Methodology Using AATSR Data[J].Remote Sensing Technology and Application,2007,22(4):479-484.[ 覃先林,张子辉,李增元,等.基于AATSR数据的东北林火识别方法研究[J].遥感技术与应用,2007,22(4):479-484]

 

[1] 郭擎,朱丽娅,李安,顾铃燕. 基于NDVI变化检测的滑坡遥感精细识别[J]. 遥感技术与应用, 2022, 37(1): 17-23.
[2] 杨凤珠,王震山,张乾,孙善磊,柳艺博. 多源日光诱导叶绿素荧光产品在中国地区的一致性研究[J]. 遥感技术与应用, 2022, 37(1): 125-136.
[3] 徐艳豪,丁忠昊,宋立生. TSEB模型在复杂下垫面下模拟结果比较研究[J]. 遥感技术与应用, 2022, 37(1): 85-93.
[4] 李翔华,黄春林,侯金亮,韩伟孝,冯娅娅,陈彦四,王静. 结合遥感和统计数据的家畜分布网格化方法研究[J]. 遥感技术与应用, 2022, 37(1): 262-271.
[5] 王茜,宋开山,毛德华,焉恒琦,谭晓宇,王宗明. 1980~2018朝鲜半岛西海岸滨海湿地演化分析[J]. 遥感技术与应用, 2022, 37(1): 108-116.
[6] 张红月,李宜展,陈思明,黄铭瑞,孙玉. 近10 a全球遥感科学研究的时空动态分析[J]. 遥感技术与应用, 2022, 37(1): 45-60.
[7] 黄耀欢,熊标,杨海军,伍程斌,朱海涛. 入河排污口遥感排查进展评述[J]. 遥感技术与应用, 2022, 37(1): 24-33.
[8] 赵天玮,朱文彬,裴亮,宝康妮. 三江源蒸散发遥感估算及其时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 137-147.
[9] 赵辉,王泽根,雷光斌,边金虎,李爱农. 缅甸土地覆被遥感制图和空间格局分析[J]. 遥感技术与应用, 2022, 37(1): 148-160.
[10] 李杰,贾坤,张宁,魏香琴,王冰. 基于遥感与生态服务模型的青岛市生态保护重要性评价[J]. 遥感技术与应用, 2021, 36(6): 1329-1338.
[11] 梁立锋,谭本华,马咏珊,陈漾漾,刘秀娟. 基于多源地理大数据的城市空间结构研究[J]. 遥感技术与应用, 2021, 36(6): 1446-1456.
[12] 尹芳,封凯,吴朦朦,拜得珍,王蕊,周园园,尹春涛,尹翠景,刘磊. 一种基于分段偏最小二乘模型的土壤重金属遥感反演方法[J]. 遥感技术与应用, 2021, 36(6): 1321-1328.
[13] 陈喆,董庆,陈建平,赵文博,蒋良文,张广泽,冯涛,王栋,毕晓佳,边民,张权平,孟德利. 基于热红外遥感的川藏铁路昌都—林芝段地热异常区定量预测评价研究[J]. 遥感技术与应用, 2021, 36(6): 1368-1378.
[14] 张欢,李弘毅,李浩杰,车涛. 基于机载LiDAR的高寒山区遥感高程数据精度评估[J]. 遥感技术与应用, 2021, 36(6): 1311-1320.
[15] 王昀琛,黄春林,冯娅娅,顾娟. 基于2030可持续发展目标的珠三角土地消耗率与人口增长率协调关系评价[J]. 遥感技术与应用, 2021, 36(5): 1168-1177.