Please wait a minute...
img

官方微信

遥感技术与应用  2011, Vol. 26 Issue (2): 129-136    DOI: 10.11873/j.issn.1004-0323.2011.2.129
研究与应用     
整合机载CASI和SASI高光谱数据的北方森林树种填图研究
刘丽娟1,2,3,庞勇2,范文义1,李增元2,李明泽1
(1.东北林业大学林学院,黑龙江 哈尔滨150040;2.中国林业科学研究院资源信息研究所,北京100091;
3.杭州师范大学遥感与地球科学研究院,浙江 杭州310012)
Integration of Airborne Hyperspectral CASI and SASI Data for Tree Species Mapping in the Boreal Forest,China
LIU Lijuan1,2,3,PANG Yong2,FAN Wenyi1,LI Zengyuan2,LI Mingze1
(1.College of Forest,Northeast Forestry University,Haerbin 150040,China;
2.Research Institute of Forest Resource Information Techniques,CAF,Beijing 100091,China;
3.Institute of Remote Sensing and Earth Sciences,Hangzhou Normal University,Hangzhou 310012,China)
 全文: PDF(4653 KB)  
摘要:

将机载CASI和SASI高光谱数据整合,既可以获取可见光—近红外—短波红外区间连续的窄波段地物光谱,又能得到很高的空间分辨率,为高覆盖度的森林树种识别又增加了一种新方法。但是由于两种传感器的光谱响应不同,接收到的辐射值差异较大,如何将两种数据有效整合目前仍是一个难题。CASI和SASI覆盖谱段不同,受大气影响程度也不同,根据植被反射和吸收光谱特性,首先用基于统计模型的经验线性法和基于辐射传输的MODTRAN模型分别对CASI和SASI大气校正,复原地物光谱真实的反射率。然后去除反射率光谱包络线,用Savitzky\|Golay滤波函数对归一化后的光谱曲线进行平滑,以去除噪声及异常点,实现CASI和SASI数据(CASI+SASI)的整合。与实测光谱曲线对比发现,整合后的CASI+SASI光谱曲线与实测光谱曲线匹配度较高,并且比单一传感器的光谱信息更丰富,有利于不同树种的区分识别。最后应用光谱微分及曲线匹配技术,选取SVM分类器实现了研究区的树种填图,总体精度达到86.21%,Kappa系数为0.8297,该方法有效可行,为后续的相关研究提供了参考。

关键词: 机载高光谱CASISASI整合包络线去除Savitzky-Golay滤波    
Abstract:

Integrating CASI and SASI airborne hyperspectral data could help acquire both continuous narrow-band spectra covered the visible\|near infrared\|shortwave infrared range and high spatial resolution information.It provides a new method for tree species identification in high coverage rate forest.However,due to the different spectral response of the two sensors,there were differences between the received radiances.How to integrate the two dataset effectively for tree species classification is still a problem.CASI and SASI data have both different coverage of spectrum and atmosphere impact.According to the characteristic of reflectance and absorption spectra of vegetation,experience linear method based on statistical model and MODTRAN model based on radiative transfer theory were used for atmospheric correction of CASI and SASI data respectively to retrieve the real spectral reflectance of ground object.Then CASI and SASI data were integrated (CASI + SASI) by Savitzky-Golay filter function smoothed continuue removal spectra to reduce noise and abnormal points.Compared the integration of CASI + SASI spectrum with the field measured spectrum showed that the two curves matched well each other.In addition,the integrated spectra have richer spectral information for tree species distinction than any single one.Tree species mapping was realized base on the integration of CASI and SASI data using SVM classifier.An overall accuracy of 86.21% and Kappa coefficient of 0.8297 were obtained.And the result indicated that the proposed method to integrate CASI and SASI data is feasible for a more accuracy in forest tree species classification,and it would be a reference for the later research.

Key words: Airborne    Hyperspectrum    CASI    SASI    Integration    Continuum removal    Savitzky-Golay filter
收稿日期: 2010-12-10 出版日期: 2011-07-25
:  TP79  
基金资助:

国家973计划项目(2007CB714404),国家863计划项目(2009AA12Z142),国家林业局行业公益课题(200704019),教育部博士点学科专项基金(20070225003)资助。

通讯作者: 庞勇(1976-),男,安徽太和人,副研究员,主要从事SAR和激光雷达对地观测机理以及森林参数反演研究。Email:caf.pang@gmail.com。      E-mail: llj7885@163.com
作者简介: 刘丽娟(1978-),女,江苏邳州人,博士研究生,主要从事3S技术在林业中的应用。Email:llj7885@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘丽娟
庞勇
范文义
李增元
李明泽

引用本文:

刘丽娟,庞勇,范文义,李增元,李明泽. 整合机载CASI和SASI高光谱数据的北方森林树种填图研究[J]. 遥感技术与应用, 2011, 26(2): 129-136.

LIU Lijuan,PANG Yong,FAN Wenyi,LI Zengyuan,LI Mingze. Integration of Airborne Hyperspectral CASI and SASI Data for Tree Species Mapping in the Boreal Forest,China. Remote Sensing Technology and Application, 2011, 26(2): 129-136.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2011.2.129        http://www.rsta.ac.cn/CN/Y2011/V26/I2/129

[1]Vane G,Goetz A F H.Terrestrial Imaging Spectrometry:Cu\|rrent Status,Future Trends[J].Remote Sensing of Environment,1993,44:117-126.


[2]Resmini R G,Kappus M E,Aldrich W S,et al.Mineral Mapping with Hyperspectral Digital Imagery Collection Experiment(HYDICE) Sensor Data at Cuprite,Nevada,U.S.A.[J].International Journal of Remote Sensing,1997,18(7):1553-1570.

[3]Schlapfer D,Borel C C,Keller J,et al.Atmospheric Precorrected Differential Absorption Technique to Rretrieve Columnar Water Vapor[J].Remote Sensing of Environment,1998,65:353-366.

[4]Sun Lin,Liu Qinhuo,Chen Liangfu,et al.The Application of HJ\|1 Hyperspectral Imaging Radiometer to Retrieve Aerosol Optical Thickness Over Land[J].Journal of Remote Sensing,2006,10(5):770-776.[孙林,柳钦火,陈良富,等.环境与减灾小卫星高光谱成像仪陆地气溶胶光学厚度反演[J].遥感学报,2006,10(5):770-776.]

[5]Boschetti M,Boschetti L,Oliveri S,et al.Tree Species Mapping with Airborne Hyperspectral MIVIS Data:The Ticino Park Study Case[J].International Journal of Remote Sensing,2007,28:1251-1261.

[6]Buddenbaum H,Schlerf M,Hill J.Classification of Coniferous Tree Species and Age Classes Using Hyperspectral Data and Geostatistical Methods[J].International Journal of Remote Sensing,2005,26(24):5453-5465.

[7]Goodenough D G,Dyk A,Niemann K O,et al.Processing Hyperion and ALI for Forest Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1321-1331.
[8]Gong Peng,Pu Ruiliang,Yu bin.Conifer Species Recognition with Seasonal Hyperspectral Data[J].Journal of Remote Sensing,1998,2(3):211-217.[宫鹏,浦瑞良,郁彬.不同季相针叶树高光谱数据识别分析[J].遥感学报,1998,2(3):211-217.]

[9]Pu Ruiliang,Gong Peng.Hyperspectral Remote Sensing and Its Applications[M].Beijing:Higher Education Press,2000.[浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.]

[10]Zhao Yingshi.Principles and Methods of Remote Sensing Application[M].Beijing:Science Press,2003.[赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.]

[11]Milton E J,Webb J P.Ground Radiometry and Airborne Multispectral Survey of Bare Soils[J].International Journal of Remote Sensing,1987,8:3-14.

[12]Tong Qingxi.Hyperspectral Remote Sensing\|Principle,Techniques and Applications[M].Beijing:Higher Education Press,2006.[童庆禧.高光谱遥感—原理、技术与应用[M].北京:高等教育出版社,2006.]

[13]Savitzky A,Golay M J E.Smoothing and Differentiation of D-ata by Simplified Least Squares Procedures[J].Analytical Chemistry,1964,36:1627-1639.

[14]Niu Zheng.Remote Sensing Applications for Carbon Cycle[M].Beijing:Science Press,2008:41.[牛铮.碳循环遥感基础与应用[M].北京:科学出版社,2008:41.]

[15]Smith K L,Steven M D,Colls J J.Use of Hyperspectral Derivative Ratios in the Red\|edge Region to Identify Plant Stress Responses to Gas Leaks[J].Remote Sensing of Environment,2004,92:207-217.

[16]Vapnik V N.Statistical Learning Theory[M].Hoboken:Wiley,1998.

[1] 陈伟民,张凌,宋冬梅,王斌,丁亚雄,许明明,崔建勇. 基于AdaBoost改进随机森林的高光谱图像地物分类方法研究[J]. 遥感技术与应用, 2018, 33(4): 612-620.
[2] 虢韬,沈平,时磊. 机载LiDAR快速定位高压电塔方法研究[J]. 遥感技术与应用, 2018, 33(3): 530-535.
[3] 苏阳,祁元,王建华,徐菲楠,张金龙. 基于航空高光谱影像的额济纳绿洲土地覆被提取[J]. 遥感技术与应用, 2018, 33(2): 202-211.
[4] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[5] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.
[6] 刘爱林,郭宝平,李岩山 . 基于离散粒子群算法的凸多模态高光谱图像端元提取研究[J]. 遥感技术与应用, 2018, 33(2): 227-232.
[7] 吴兴,张霞,孙雪剑,张立福,戚文超. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
[8] 宋婷婷,付秀丽,陈玉,魏永明,王钦军,程先锋. 云南个旧矿区土壤锌污染遥感反演研究[J]. 遥感技术与应用, 2018, 33(1): 88-95.
[9] 刘慧珺,苏红军,赵-波. 基于改进萤火虫算法的高光谱遥感多特征优化方法[J]. 遥感技术与应用, 2018, 33(1): 110-118.
[10] 梁茜茜,张汉德,孙根云,王鹏. 基于机载激光雷达数据的海岸带水域提取方法[J]. 遥感技术与应用, 2018, 33(1): 136-142.
[11] 李伟娜,韦玮,张怀清,刘华. 基于多角度高光谱数据的高寒沼泽湿地植被生物量估算[J]. 遥感技术与应用, 2017, 32(5): 809-817.
[12] 肖昊,王杰. 基于IDL和MATLAB混合编程的两种光谱混合分析方法比较[J]. 遥感技术与应用, 2017, 32(5): 858-865.
[13] 唐超,邵龙义. 高光谱遥感地物目标识别算法及其在岩性特征提取中的应用[J]. 遥感技术与应用, 2017, 32(4): 691-697.
[14] 李恒凯,欧彬,刘雨婷,邱玉宝. 基于混合像元分解的高光谱影像柑橘识别方法[J]. 遥感技术与应用, 2017, 32(4): 743-750.
[15] 苏红军,赵波. 基于共形几何代数的高光谱遥感波段选择方法[J]. 遥感技术与应用, 2017, 32(3): 539-545.