Please wait a minute...
img

官方微信

遥感技术与应用  2011, Vol. 26 Issue (2): 147-155    DOI: 10.11873/j.issn.1004-0323.2011.2.147
研究与应用     
基于TIMESAT的3种时序NDVI拟合方法比较研究—以藏北草地为例
宋春桥1,2,柯灵红1,2,游松财3,刘高焕1,钟新科1,2
(1.中国科学院地理科学与资源研究所,资源与环境信息系统国家重点实验室,北京100101;
2.中国科学院研究生院,北京100049;3.中国农业科学院农业环境与可持续发展研究所,北京100081)
Comparison of Three NDVI Timeseries Fitting Methods based on TIMESAT——Taking the Grassland in Northern Tibet as Case
SONG Chun-qiao1,2,KE Ling-hong1,2,YOU Song-cai3,LIU Gao-huan1,ZHONG Xin-ke1,2
(1.Institute of Geographic Sciences and Natural Resources Research,State Key Lab of Resources and Environmental Information System,Chinese Academy of Sciences,Beijing 100101,China;
2.Graduate University of Chinese Academy of Sciences,Beijing 100049,China;
3.Institute of Environment and Sustainable Development in Agriculture; Chinese Academy of Agricultural Sciences,Beijing 100081,China)
 全文: PDF(2633 KB)  
摘要:

以藏北地区2007~2009年MODIS 16 d合成的NDVI时间序列为例,介绍了基于TIMESAT 2.3软件的3种主要拟合算法——非对称高斯函数(AG)拟合、双Logistic曲线(D-L)拟合和Savitzky-Golay(S-G)滤波法的基本原理和实现流程;重点从拟合重建NDVI时间序列对原始NDVI值上包络线的拟合效果及保持原始高质量NDVI点值真实值的程度两个方面,分析比较3种算法的特点。结果表明:① 3种拟合算法均能不同程度提高整个区域的NDVI平均值,AG与D-L拟合法处理后的NDVI时间序列与原始NDVI曲线的整体特征较S\|G滤波方法更加吻合;② AG与D\|L拟合重建的NDVI时间曲线在生长季峰期高于上包络线,S-|G滤波法处理结果低于上包络线,3种方法中AG拟合结果与上包络线最为接近;③ 在保持原始高质量NDVI值真实性方面,AG与D\|L拟合法处理结果相似,除生长季曲线的峰期外,均优于Savitzky-Golay滤波法。该研究结论为基于NDVI时间序列进行陆地系统生态环境各方面研究中数据去噪预处理的方法选择提供参考。

关键词: MODIS NDVITIMESAT拟合噪声去除时间序列数据藏北    
Abstract:

MODIS 16 days composited NDVI time\|series of 2007\|2009 in northern Tibet are taken as study case to compare the characters of three principal fitting methods,that is the double Logistic function fitting (D-L),asymmetric Guassian function fitting (AG),and Savitzky-Golay filtering (S\|G) methods.To begin first,the basic principles and implementation process of the three algorithms are introducted based the TIMESAT 2.3 program.Then,the results of NDVI time\|series fitting based on the three methods are emphatically compared and analyzed,from the aspects of fitting effect for the upper envelope curve of original NDVI series and the ability of preserving the high-quality NDVI fidelity.The results show that the three fitting methods would raise the mean value of NDVI samples to some degree,and that the AG and D\|L fitting algorithms generate more consistently reconstructed NDVI time\|series to the original NDVI temporal curve than the S\|G filtering method.Secondly,the fitting NDVI values of AG and D-L methods are higher than points of the upper envelope curve,the S\|G filtering method is opposite.Among the three algorithms,AG fitting produce the most approximative results.Besides,the AG and D\|L methods perform extremely similarity to keep the fidelity of high\|quality NDVI samples,and their fitting NDVI series are better than that of S-G filtering except the peak period of growing season.

Key words: MODIS NDVI    TIMESAT    Fitting    Noise reduction    Time-series data    Northern Tibet
收稿日期: 2010-10-20 出版日期: 2011-07-25
:  TP 79  
基金资助:

藏北高原地区土壤水分与土壤温度时空变化模拟分析(40971132)。

作者简介: 宋春桥(1986-),男,湖南衡阳人,硕士研究生,主要从事遥感与GIS应用研究。Email:chunqiao_song@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宋春桥
柯灵红
游松财
刘高焕
钟新科

引用本文:

宋春桥,柯灵红,游松财,刘高焕,钟新科. 基于TIMESAT的3种时序NDVI拟合方法比较研究—以藏北草地为例[J]. 遥感技术与应用, 2011, 26(2): 147-155.

SONG Chun-qiao,KE Ling-hong,YOU Son-|cai,LIU Gao-huan,ZHONG Xin-ke. Comparison of Three NDVI Timeseries Fitting Methods based on TIMESAT——Taking the Grassland in Northern Tibet as Case. Remote Sensing Technology and Application, 2011, 26(2): 147-155.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2011.2.147        http://www.rsta.ac.cn/CN/Y2011/V26/I2/147


[1]Ackerman S A,Strabala K I,Menzel W P,et al.Discriminating Clear Sky from Clouds with MODIS[J].Journal of Geophysical Research,1998,103(32):141-157.


[2]Yu F,Price K P,Ellis J,et al.Satellite Observations of the Seasonal Vegetation Growth in Central Asia:1982-1990[J].Photogrammetric Engineering & Remote Sensing,2004,70(4):461-469.
[3]Cihlar J,Ly H,Li Z Q,et al.Multitemporal,Multichannel AVHRR Data Sets for Land Biosphere Studies\|artifacts and Corrections[J].Remote Sensing of Environment,1997,60:35-57.

[4]Li Hangyan,Xie Yaowen,Ma Mingguo.Reconstruction of Te\|mporal NDVI Dataset:Evaluation and Case Study[J].Remote Sensing Technology and Application,2009,24(5):596-602.[李杭燕,颉耀文,马明国.时序NDVI数据集重建方法评价与实例研究[J].遥感技术与应用,2009,24(5):596-602.]


[5]Wu Wenbin,Yang Peng,Tang Huajun,et al.Comparison of Two Fitting Methods of NDVI Time Series Datasets[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(11):183-188.[吴文斌,杨鹏,唐华俊,等.两种NDVI时间序列数据拟合方法比较[J].农业工程学报,2009,25(11):183-188.]


[6]Viovy N,Arino O,Belward A S.The Best Index Slope Extraction (BISE):a Method for Reducing Noise in NDVI Time Series[J].International Journal of Remote Sensing,1992,13:1585-1590.


[7]Lovel J L,Graetz R D.Filtering Pathfinder AVHRR Land NDVI Data for Australia[J].International Journal of Remote Sensing,2001,22(13):2649-2654.


[8]Chen J,Jnsson P ,Tamura M,et al.A Simple Method for Reconstructing a High\|quality NDVI Time-series Data Set based on the Savitzky\|Golay Filter[J].Remote Sensing of Environment,2004,91:332-344.


[9]Ma M G,Veroustraete F R.Reconstructing Pathfinder AVHRR Land NDVI Time\|series Data for the Northwest of China[J].Advances in Space Research,2006,37:835-840.


[10]Yan Huimin,Cao Mingkui,Liu Jiyuan,et al.Characterizing Spatial Patterns of Multiple Cropping System in China from Multi\|temporal Remote Sensing Images[J].Transactions of the Chinese Society of Agricultural Engineering,2005,21(4):85-90.[闫慧敏,曹明奎,刘纪远,等.基于多时相遥感信息的中国农业种植制度空间格局研究[J].农业工程学报,2005,21(4):85-90.]


[11]Roerink G,Menenti M,Verhoef W.Reconstructing Cloudfree NDVI Composites Using Fourier Analysis of Time Series[J].International Journal of Remote Sensing,2000,21(9):1911-1917.


[12]Beck P,Atzberer C,H gda K.et al.Improved Monitoring of Vegetation Dynamics at very High Latitudes:a New Method Using MODIS NDVI[J].Remote Sensing of Environment,2005,100(3):321-334.


[13]J nsson P,Eklundh L.Seasonality Extraction by Function Fi\|tting to Time-series of Satellite Sensor Data[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1824-1932.


[14]Gua J,Li X,Huang H L,et al.A Simplified Data Assimilation Method for Reconstructing Time-series MODIS NDVI Data[J].Advances in Space Research,2009,44:501-|509.


[15]Julien Y,Sobrino J A.Comparison of Cloud-reconstruction Methods for Time Series of Composite NDVI Data[J].Remote Sensing of Environment,2010,114:618-625.


[16]Sakamoto T,Yokozawa M,Toritani H,et al.A Crop Phenology Detection Method Using Time\|series MODIS Data[J].Remote Sensing of Environment,2005,96(3/4):366-374.


[17]Jennifer N.Hird,Gregory J.McDermid.Noise Reduction of NDVI Time Series:an Empirical Comparison of Selected Techniques[J].Remote Sensing of Environment,2009,113:248-258.


[18]Gu Juan,Li Xin,Huang Chunlin.Research on the Reconstructing of Time\|series NDVI Data[J].Remote Sensing Technology and Application,2006,21(4):39-|395.[顾娟,李新,黄春林.NDVI时间序列数据集重建方法述评[J].遥感技术与应用,2006,21(4):391-395.]
[19]Li Ru,Zhang Xia,Liu Bo,et al.Review on Methods of Remote Sensing Time-series Data Reconstruction[J].Journal of Remote Sensing,2009,13(2):335-341.[李儒,张霞,刘波,等.遥感时间序列数据滤波重建算法发展综述[J].遥感学报,2009,13(2):335-341.]


[20]Institute of Grassland Ecological Research in Gansu Province,and Livestock\|raised Bureau in Naqu of Tibet.Animal Husbandry Resource of Grassland in Naqu of Tibet[M].Lanzhou:Gansu Science and Technology Press,1991:12-68.[甘肃草原生态研究所草地资源室和西藏自治区那曲地区畜牧局.西藏那曲地区草地畜牧业资源[M].兰州:甘肃科学技术出版社,1991:12-68.]


[21]Li Huixia.Use of 3S Techniques for Monitoring Grassland Degradation——A Case Study in Naqu County,Tibet Autonomous Region[D].Chengdu:Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,2004.[李辉霞.“3S”技术在草地退化动态监测中的应用——以西藏自治区那曲县为例[D].成都:中国科学院成都山地灾害与环境研究所,2004.]


[22]Jnsson P,Eklundh L.TIMESAT——A Program for Analyzing Time\|series of Satellite Sensor Data[J].Computers & Geosciences,2004,30:833-845.

[1] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[2] 虢韬,沈平,时磊. 机载LiDAR快速定位高压电塔方法研究[J]. 遥感技术与应用, 2018, 33(3): 530-535.
[3] 冯莉,李柳华,郭松,卢荻. HJ-1A NDVI与MODIS NDVI时间序列提取植被物候特征对比研究[J]. 遥感技术与应用, 2016, 31(6): 1158-1166.
[4] 赵永光,李传荣,马灵玲,唐伶俐,王宁. 一种遥感图像太阳—观测几何归一化方法[J]. 遥感技术与应用, 2016, 31(2): 260-266.
[5] 边金虎,李爱农,王少楠,赵伟,雷光斌. 基于MODIS NDVI的Landsat TM影像地形阴影区光谱信息恢复方法研究[J]. 遥感技术与应用, 2016, 31(1): 12-22.
[6] 除多,马伟强,扎西顿珠. 藏北那曲地区地面与MODIS反演的地表反照率对比分析[J]. 遥感技术与应用, 2015, 30(5): 908-916.
[7] 王颖洁,刘良云,王志慧. 基于时序Landsat数据的三江平原植被地表类型变化遥感探测研究[J]. 遥感技术与应用, 2015, 30(5): 959-968.
[8] 刘亚南,肖飞,杜耘. Logistic函数方法拟合多时序NDVI数据的改进研究[J]. 遥感技术与应用, 2015, 30(4): 737-743.
[9] 耿丽英,马明国. 长时间序列NDVI数据重建方法比较研究进展[J]. 遥感技术与应用, 2014, 29(2): 362-368.
[10] 王 华,韩祖杰,王志敏. 一种高分辨率影像上铁路中心线提取的方法[J]. 遥感技术与应用, 2013, 28(5): 761-765.
[11] 王峰,尤红建,傅兴玉. 基于迭代高斯模型的干涉DEM滤波算法[J]. 遥感技术与应用, 2013, 28(2): 258-262.
[12] 王生明,李永树,何敬. 一种改进的局部加权拟合校正方法[J]. 遥感技术与应用, 2013, 28(1): 85-89.
[13] 樊辉. 融合QA-SDS的MODIS NDVI时序数据重构[J]. 遥感技术与应用, 2013, 28(1): 90-96.
[14] 毛德华,王宗明,罗玲,杨桄. 基于MODIS和AVHRR数据源的东北地区植被NDVI变化及其与气温和降水间的相关分析 [J]. 遥感技术与应用, 2012, 27(1): 77-85.
[15] 郭芬芬,范建容,边金虎,刘飞,张怀珍. 基于MODIS NDVI时间序列数据的藏北草地类型识别[J]. 遥感技术与应用, 2011, 26(6): 821-826.