Please wait a minute...


遥感技术与应用  2011, Vol. 26 Issue (5): 569-576    DOI: 10.11873/j.issn.1004-0323.2011.5.569
(1.武汉大学资源与环境科学学院,湖北 武汉430079;2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州730000)
The Uncertainty and Sensitivity Analysis of Surface Turbulent Fluxes to Remote Sensing Products
Zhang Tian1,2,Huang Chunlin2,Shen Huanfeng1
(1.School of Resource and Environmental Science,Wuhan University,Wuhan 430079,China;2.Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China)
 全文: PDF(5513 KB)  

基于2007年12月22日~2009年12月31日黑河流域阿柔冻融观测站的气象驱动数据,利用通用陆面模型(Common Land Model,CoLM)模拟的地表通量结果,研究地表通量对模型参数(叶面积指数、地表反照率和植被覆盖度)的不确定性与敏感性。结果表明,叶面积指数、地表反照率和植被覆盖度对地表感热和潜热通量不同组分的影响存在较大的差异。其中,植被层的感热和潜热通量对叶面积指数的敏感性程度较高,敏感系数均达到0.7以上;与潜热通量相比,感热通量对反照率更加敏感,土壤感热、植被感热和总感热通量对反照率的敏感系数分别达到-0.96、-0.97和-0.66,而土壤潜热和总潜热通量对地表反照率的敏感系数仅为0.1左右;植被潜热通量对植被覆盖度的敏感性程度很高,敏感系数范围为0.92~0.96,而土壤感热通量对植被覆盖度最不敏感,敏感系数只有0.18左右。

关键词: 地表通量叶面积指数地表反照率植被覆盖度遥感    

The uncertainty and sensitivity analysis of surface turbulent fluxes to model parameters (leaf area index,surface albedo and vegetation coverage fraction) is studied,which uses meteorological forcing data from December 22,2007 to December 31,2009 at the Arou observation station in Heihe river basin.The result shows that surface turbulent fluxes are all quite sensitive to leaf area index,surface albedo and vegetation coverage fraction.As for leaf area index,the sensible and latent heat fluxes from canopy are more sensitive to leaf area index than other turbulent fluxes,the sensitivity coefficients are all above 0.7.As for surface albedo,sensible heat fluxes are more sensitive to surface albedo in comparison with latent heat fluxes.The sensitivity coefficients of ground,canopy,and total sensible heat fluxes to surface albedo are about -0.96,-0.97 and -0.66,respectively.The sensitivity coefficients of ground and total latent heat fluxes to surface albedo are very low and the value is only about 0.1.In terms of vegetation coverage fraction,latent heat flux from canopy is the most sensitive to vegetation coverage fraction in comparison with other turbulent fluxes,and the sensitivity coefficient ranges from 0.92 to 0.96,while the sensitivity coefficient of sensible heat flux from ground to vegetation coverage fraction is very low and the value is only about 0.18.

Key words: Surface turbulent fluxes    Leaf area index    Surface albedo    Vegetation coverage fraction    Remote sensing
收稿日期: 2011-05-03 出版日期: 2011-11-01
:  TP 79  


作者简介: 张添(1988-),男,湖北武汉人,硕士研究生,主要从事陆面数据同化及定量遥感研究。。
E-mail Alert


张添,黄春林,沈焕锋. 地表通量对模型参数的不确定性和敏感性分析[J]. 遥感技术与应用, 2011, 26(5): 569-576.

Zhang Tian,Huang Chunlin,Shen Huanfeng. The Uncertainty and Sensitivity Analysis of Surface Turbulent Fluxes to Remote Sensing Products. Remote Sensing Technology and Application, 2011, 26(5): 569-576.


[1]Sellers P J,Mintz Y,Sud Y C,et al.A Simple Biosphere Model(SiB) for Use within General Circulation Models[J].Journal of the Atmospheric Sciences,1986.43(6):505-531.

[2]Sellers P J,Los S O,Tucker C J,et al.A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMs.Part II:The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data[J].Journal of Climate,1996.9(4):706-737.[3]Olioso A,Chauki H,Courault D,et al.Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data Into SVAT Models[J].Remote Sensing of Environment,1999,68(3):341-356.

 [4]Xue Y,Sellers P J,Kinter J,et al.A Simplified Biosphere Model for Global Climate Studies[J].Journal of Climate,1991,4(3):345-364.

 [5]Xing Zhurong,Feng Yougui,Yang Guijun,et al.Method of Estimating Vegetation Coverage based on Remote Sensing[J].Remote Sensing Technology and Application,2009,24(6):849-854.[邢著荣,冯幼贵,杨贵军,等.基于遥感的植被覆盖度估算方法述评[J].遥感技术与应用,2009,24(6):849-854.]

[6]Woodward F I,Smith T M,Enanuel W R.A Global Land Primary Productivity and Phytogeography Model[J].Global Biogeochemical Cycles,1995,9(4):471-490.

[7]Gu J,Li X,Huang C L,et al.A Simplified Data Assimilation Method for Reconstructing Time-series MODIS NDVI Data[J].Advances in Space Research,2009.44(4):501-509.

[8]Fensholt R,Sandholt I,Rasmussen M S.Evaluation of MODIS LAI,FAPAR and the Relation between FAPAR and NDVI in a Semi-arid Environment Using in Situ Measurements[J].Remote Sensing of Environment,2004.91(3-4):490-507.

 [9]Liu Yan,Wang Jindi,Zhou Hongmin,et al.LAI Measuring Data Processing,Analysis and Spatial Scaling in the Middle Reaches of Heihe Experimental Research Region[J].Remote Sensing Technology and Application,2010,25(6):805-813.[刘艳,王锦地,周红敏,等.黑河中游试验区不同分辨率LAI数据处理,分析和尺度转换[J].遥感技术与应用,2010,25(6):805-813.]

[10]Dickinson R E,Henderson-Sellers A.Modelling Tropical Deforestation:A Study of GCM Land-surface Parametrizations[J].Quarterly Journal of the Royal Meteorological Society,1988,114(480):439-462.

[11]Tian Y,Dickinson R E,Zhou L,et al.Comparison of Seasonal and Spatial Variations of Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model[J].Journal of Geophysical Research,2004,109(D01103),doi:10.1029/2003JD003777.

[12]Xu T,Liang S L,Liu S M.Estimating Turbulent Fluxes through Assimilation of Geostationary Operational Environmental Satellites Data Using Ensemble Kalman Filter[J].Journal of Geophysical Research,2011,116(D09109),doi:10.1029/2010JD015150.

[13]Sud Y,Fennessy M.A Study of the Influence of Surface Albedo on July Circulation in Semi-arid Regions Using the Glas GCM[J].International Journal of Climatology,1982,2(2):105-125.

[14]Pielke R A,Marland G,Betts R A,et al.The Influence of Land-use Change and Landscape Dynamics on the Climate System:Relevance to Climate-change Policy beyond the Radiative Effect of Greenhouse Gases[J].Philosophical Transactions of the Royal Society of London.Series A:Mathematical,Physical and Engineering Sciences,2002.360(1797):1705-1719.

[15]Eltahir E,Bras R.Estimation of the Fractional Coverage of Rainfall in Climate Models[J].Journal of Climate,1993,6(4):639-644.

[16]Lambin E F.Modelling and Monitoring Land-cover Change Processes in Tropical Regions[J].Progress in Physical Geography,1997,21(3):375-393.

[17]Dai Y J,Zeng X,Dickinson R E,et al.The Common Land Model[J].Bulletin of the American Meteorological Society,2003,84(8):1013-1024 .

[18]Dickinson R E.Biosphere/Atmosphere Transfer Scheme(BATS)for the NCAR Community Climate Model[R].NCAR Technical Note,1986:69.

[19]Bonan G B.Land Surface Model (LSM Version 1.0) for Ecological,Hydrological,and Atmospheric Studies:Technical Description and Users Guide.Technical Note[R].National Center for Atmospheric Research,Boulder,CO (United States).Climate and Global Dynamics Div.,1996.

[20]Dai Y J,Zeng Q C.A Land Surface Model (IAP94) for Climate Studies Part I:Formulation and Validation in Off-line Experiments[J].Advances in Atmospheric Sciences,1997,14(4):433-460.

[21]Dai Y J,Zeng X,Dickinson R E.Common Land Model (CLM):Technical Documentation and Users Guide[S].Georgia Institute of Technology,Atlanta,2001.

[22]Li Xin,Ma Mingguo,Wang Jian,et al.Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin:Scientific Objectivesand Experiment Design[J].Advances in Eearth Science,2008,23(9):897-914.[李新,马明国,王建,等.黑河流域遥感-地面观测同步试验:科学目标与试验方案[J].地球科学进展,2008,23(9):897-914.]

[23]Wang Jian,Che Tao,Zhang Lixin,et al.The Cold Regions Hydtrological Remote Sensing and Ground-based Synchronous Observation Experiment in the Upper Reaches of Heihe River[J].Journal of Glaciology and Geocryology,2009,31(2):189-197.[王建,车涛,张立新,等.黑河流域上游寒区水文遥感—地面同步观测试验[J].冰川冻土,2009,31(2):189-197.]

[24]Helton J C,Johnson J D,Sallaberry C,et al.Survey of Sampling-based Methods for Uncertainty and Sensitivity Analysis[J].Reliability Engineering & System Safety,2006,91(10-11):1175-1209.

[25]Annan J.Modelling under Uncertainty:Monte Carlo Methods for Temporally Varying Parameters[J].Ecological Modelling,2001,136(2-3):297-302.

[26]Decker K M.The Monte Carlo Method in Science and Engineering:Theory and Application[J].Computer Methods in Applied Mechanics and Engineering,1991,89(1-3):463-483.

[27]Saltelli A,Ebrary I.Global Sensitivity Analysis:The Primer[M].Wiley Online Library,2008:10-34.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 刘振波,邹娴,葛云健,陈健,曹雨濛. 基于高分一号WFV影像的随机森林算法反演水稻LAI[J]. 遥感技术与应用, 2018, 33(3): 458-464.
[14] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[15] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.