Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (1): 45-50    DOI: 10.11873/j.issn.1004-0323.2012.1.45
模型与反演     
基于ICESat-GLAS数据估算复杂地形区域森林蓄积量潜力初探—以云南香格里拉县为例
王金亮1,程峰1,2,王成2,陈联君1,王小花1
(1.云南师范大学旅游与地理科学学院,云南 昆明 650092;2.中国科学院对地观测与数字地球科学中心,北京 100094)
Primary Discussion on the Potential of Forest Volume Estimating Using ICESat-GLAS Data in Complex Terrain Area—A Case Study of Shangrila,Yunnan Province
Wang Jinliang1,Cheng Feng1,2,Wang Cheng2,Chen Lianjun1,Wang Xiaohua1
(1.College of Tourism & Geographical Sciences,Yunnan Normal University,Kunming 650092,China; 2.Center for Earth Observation and Digital Earth,Chinese Academic of Science,Beijing 100094,China)
 全文: PDF 
摘要:

近年来ICESat\|GLAS波形数据被广泛地应用于森林生态参数的估算。为了研究大光斑激光雷达数据在复杂地形区域估算森林蓄积量方面的能力,以云南省香格里拉县为研究区域,将GLA01数据处理后得到的平均树高与实测树高及坡度进行对比,探究了坡度对GLAS数据估算平均树高的影响,同时将其与平均树高、光斑范围内森林蓄积量建立关系,初步研究三者之间的关系。结果表明,坡度会降低大光斑激光雷达数据估算森林植被高度的精度,但GLAS数据估算出的树高与实测的平均树高、蓄积量数据仍有较好的相关性,这说明利用GLAS数据估算森林蓄积量有较大的潜力。

 

关键词: GLAS数据平均树高森林蓄积量香格里拉    
Abstract:

ICESatGLAS waveform data have being used widely in estimation of ecological parameters of forest in recent years.In order to judge the potential of large footprint LiDAR data of ICESatGLAS on estimating the forest volume in complex terrain,a case study of Shangrila,Yunnan Province,comparison between the average canopy height retrieved from the GLA01 data and canopy height measured in the field and slope data,and the impact of slope on the canopy height estimation by GLAS data had been also explored.Meanwhile,the relationship among the slope,the average canopy height and the field measured volume in large footprint had been discussed.The results show that the slope can reduce the accuracy of the estimation of the canopy height by using large footprint LiDAR data.However,there is a good relationship among the average canopy height derived from the GLAS data,canopy height and volume measured in the field and slope.It indicates that the potential of forest volume estimation by using GLAS data is great.

Key words: Data of ICESatGLAS    Average canopy height    Forest volume    Shangrila
收稿日期: 2011-06-29 出版日期: 2012-03-22
:  P 237.9  
基金资助:

国家自然科学基金项目“三江并流区森林生态系统碳储量遥感定量研究”(40861009),云南省中青年学术技术带头人培养项目(2008PY056)、中国科学院百人计划专项资助。

作者简介: 王金亮(1963-),男,云南武定人,博士,教授,主要从事资源环境遥感应用研究。Email:wang_jinliang@hotmail.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王金亮,程峰,王成,陈联君,王小花. 基于ICESat-GLAS数据估算复杂地形区域森林蓄积量潜力初探—以云南香格里拉县为例[J]. 遥感技术与应用, 2012, 27(1): 45-50.

Wang JinliangCheng Feng,Wang Cheng,Chen Lianjun,Wang Xiaohua. Primary Discussion on the Potential of Forest Volume Estimating Using ICESat-GLAS Data in Complex Terrain Area—A Case Study of Shangrila,Yunnan Province. Remote Sensing Technology and Application, 2012, 27(1): 45-50.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.1.45        http://www.rsta.ac.cn/CN/Y2012/V27/I1/45

[1]Satou Daishichirou,Tsutsumi Toshio.Material Production of Terrestrial Plant Communities[M].Beijing:Science Press,1986:2147.[佐藤大七郎,堤利夫.陆地植物群落的物质生产[M].北京:科学出版社,1986:2147.]
[2]Brown S,Lugo A E.Aboveground Biomass Estimates for Tropical Moist Forests of Brazilian Amazon[J].Interciencia,1992,(17):818.
[3]Dobson M C,Pierce L E,Ulaby F T.Knowledge based Land Cover Classification Using ERS1/JERS1 SAR Composites[J].IEEE Transactions on Geosciences and Remote Sensing,1996,(34):8399.
[4]Tokola T.The Influence of Field Sample Data Location on Growing Stock Volume Estimation in Landsat TM based Forest Inventory in Eastern Finland[J].Remote Sensing of Environment,2000,(74):422431.
[5]Luther J E,Fournier R A.Biomass Mapping Using Forest Type and Structure Derived from Landsat TM Imagery[J].International Journal of Applied Earth Observation and Geoinformation,2006,(8):173187.
[6]Nilsson M.Estimation of Tree Heights and Stand Volume Using an Airborne LiDAR Systems[J].Remote Sensing of Environment,1996,56:17.
[7]Means J E,Acker S A,Harding D J,et al.Use of Largefootprint Scanning Airborne LiDAR to Estimate Forest Stand Characteristics in the Western Cascades of Oregon[J].Remote Sensing of Environment,1999,(67):298308.
[8]Lefsky M A,Harding D,Cohen W B,et al.Surface LiDAR Remote Sensing of Basal Area and Biomass in Deciduous Forests of Eastern Maryland,USA[J].Remote Sensing of Environment,1999,(67):8398.
[9]Popescu S C,Wynne R H,Nelson R F.Estimating Plotlevel Tree Heights with LiDARlocal Filtering with a Canopyheight based Variable Window Size[J].Computers and Electronics in Agriculture,2002,(37):7195.
[10]Hyde P,Dubayah R,Peterson B,et al.Mapping Forest Structure for Wildlife Habitat Analysis Using Waveform LiDAR:Validation of Montane Ecosystems[J].Remote Sensing of Environment,2005,(96):427437.
[11]Dubayah R O,Drake J B.LiDAR Remote Sensing for Forestry[J].Journal of Forestry,2000,98(6):4446.
[12]Pang Yong,Li Zengyuan,Sun Guoqing,et al.Effects of Terrain on the Large Footprint LiDAR Waveform of Forests[J].Forest Research,2007,20(4):464468.[庞勇,李增元,孙国清,等.地形对大光斑激光雷达森林回波影响研究[J].林业科学研究,2007,20(4):464468.]
[13]Xing Yanqiu,Wang Lihai.ICESatGLAS Full Waveformbased Study on Forest Canopy Height Retrieval in Sloped Area—A Case Study of Forests in Changbai Mountains,Jilin[J].Geomatics and Information Science of Wuhan University,2009,34(6):697700.[邢艳秋,王立海.基于ICESatGLAS完整波形的坡地森林冠层高度反演研究——以吉林长白山林区为例[J].武汉大学学报(信息科学版),2009,34(6):697700.]
[14]Harding D J,Carabajal C C.ICESat Waveform Measurements of Withinfootprint Topographic Relief and Vegetation Vertical Structure[J].Geophysical Research Letters,2005,(32):L21S10.
[15]Schutz B E.Laser Footprint Location (Geolocation) and Surface Profiles[M].Austin:Center for Space Research in the University of Texas,2002.
[16]Brenner A C,Zwally H J,Bentley C R,et al.Algorithm Theoretical Basis Document[OE/OL].http://www.csr.utexas.edu /glas/atbd.html,Version 4.1,2003.[17]Wang Cheng,Tang Fuxin,Li Liwei.Decomposition of Spaceborne LiDAR Data based on Wavelet Analysis:China,201010170853.1[P].2010915.[王成,唐福鑫,李利伟.基于小波分析的星载激光雷达数据分解方法.中国专利:201010170853.1[P].2010915.]

[1] 王金亮,曾浩,王艳英,刘广杰. 基于小波分析的TM 遥感图像超分辨率重建[J]. 遥感技术与应用, 2016, 31(3): 476-480.
[2] 梁志锋,凌飞龙,汪小钦. L波段SAR与中国东北森林蓄积量的相关性分析[J]. 遥感技术与应用, 2013, 28(5): 871-878.
[3] 程鹏飞,王金亮,徐 申,程 峰,王小花. 区域森林生物量遥感信息模型构建研究[J]. 遥感技术与应用, 2012, 27(5): 722-727.
[4] 董 斌, 冯仲科, 杜林芳, 唐雪海. 山东省黄河流域森林蓄积量遥感定量估测模型研究[J]. 遥感技术与应用, 2010, 25(4): 520-524.
[5] 郑 刚, 彭世揆, 戎 慧, 李 杨, 王 妮. 基于KNN方法的森林蓄积量遥感估计和反演概述[J]. 遥感技术与应用, 2010, 25(3): 430-437.
[6] 杨存建. 卫星遥感技术在林业中的应用[J]. 遥感技术与应用, 1994, 9(2): 54-56.