Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (1): 8-14    DOI: 10.11873/j.issn.1004-0323.2012.1.8
综述     
高分辨率卫星影像车辆检测研究进展
刘珠妹1,2,刘亚岚1,谭衢霖3,任玉环1
(1.中国科学院遥感应用研究所,北京 100101;2.中国科学院研究生院,北京 100049;3.北京交通大学土木建筑工程学院,北京 100044)
Progress in Vehicle Detection from High Resolution Satellite Imagery
Liu Zhumei1,2,Liu Yalan1,Tan Qulin3,Ren Yuhuan1
(1.Institute of Remote Sensing Applications,Chinese Academy of Sciences,Beijing 100101,China;2.Graduate University of Chinese Academy of Sciences,Beijing 100049,China;3.School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China)
 全文: PDF 
摘要:

高分辨率卫星遥感技术具有在更小的空间尺度上探测地表目标的能力,利用其影像数据进行车辆检测已成为新的研究热点。在概述遥感影像车辆检测研究现状的基础上,对车辆目标影像特征及车辆检测过程进行了探讨;将车辆检测方法分为利用光谱/几何结构特征的基本检测方法和综合运用多种特征的智能化检测方法,并详细叙述了多种车辆检测方法的原理与适用性以及车辆提取中的关键技术。通过分析发现:结合多特征的机器学习和面向对象的车辆检测方法更适合较复杂环境下的车辆检测。

关键词: 智能交通系统车辆检测卫星遥感机器学习面向对象    
Abstract:

The high resolution satellite technique has an ability to detect the smaller targets on the ground.Vehicle detection using high resolution satellite imagery has become a hotspot in remote sensing research field.This paper firstly analyzed the study situation of vehicle detection from remote sensing imagery,and then discussed the imagery features of vehicles,the process and the primary methods for vehicle detection,including the basic detection methods using spectrum/structure features of vehicles and the intelligent methods combining various of vehicle features.The crucial technologies to detect vehicles were introduced in detail as well.Finally,this paper concluded that methods such as machine learning or object-oriented method using more object features can be more adaptable to complex road environment.

Key words: Intelligent transportation system    Vehicle detection    Satellite remote sensing    Machine learning;Object-oriented
收稿日期: 2011-06-27 出版日期: 2012-03-22
:  TP 79  
基金资助:

国家自然科学基金项目“基于小目标探测的高分辨率遥感影像交通参数提取研究”(40801121)。

通讯作者: 刘亚岚(1968-),女,湖南汉寿人,研究员,主要从事遥感信息提取研究。Email:liuyl@irsa.ac.cn。   
作者简介: 刘珠妹(1987-),女,河北辛集人,硕士研究生,主要从事交通遥感信息提取研究。Email:liuzm@irsa.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘珠妹,刘亚岚,谭衢霖,任玉环. 高分辨率卫星影像车辆检测研究进展[J]. 遥感技术与应用, 2012, 27(1): 8-14.

Liu Zhumei,Liu Yalan,Tan Qulin,Ren Yuhuan. Progress in Vehicle Detection from High Resolution Satellite Imagery. Remote Sensing Technology and Application, 2012, 27(1): 8-14.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.1.8        http://www.rsta.ac.cn/CN/Y2012/V27/I1/8

[1]Li Deren,Li Qingquan,Yang Bisheng,et al.Techniques of GIS,GPS and RS for the Development of Intelligent Transportation[J].Geomatics and Information Science of Wuhan University,2008,33(4):331-336.[李德仁,李清泉,杨必胜,等.3S技术与智能交通[J].武汉大学学报(信息科学版),2008,33(4):331-336.]
[2]Reinartz P,Lachaise M,Schmeer E,et al.Traffic Monitoring with Serial Images from Airborne Cameras[J].ISPRS Journal of Photogrammetry and Remote Sensing,2006,61:149-158.
[3]Szottka I,Butenuth M.Tracking Multiple Vehicles in Airborne Image Sequences of Complex Urban Environments[C]//2011 Joint Urban Remote Sensing Event,Munich,2011.
[4]Gerhardinger A,Ehrlich D,Pesaresi M.Vehicles Detection from very High Resolution Satellite Imagery[J].International Archives of Photogrammetry and Remote Sensing,2005,36(Part 3/W24):83-88.
[5]Gong Peng,Li Xia,Xu Bing.Interpretation Theory and Application Method Development for Information Extraction from High Resolution Remotely Sensed Data[J].Journal of Remote Sensing,2006,10(1):1-5.[宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-5.]
[6]Yu Yong,Zheng Hong.Vehicle Detection from High Resolution Satellite Imagery based on the Morphological Neural Network[J].Journal of Harbin Engineering University,2006,27(B07):189-193.[余勇,郑宏.基于形态神经网络的高分辨率卫星影像车辆检测[J].哈尔滨工程大学学报,2006,27(B07):189-193.]
[7]Moon H,Chellappa R,Rosenfeld A.Performance Analysis of a Simple Vehicle Detection Algorithm[J].Image Vision Computing,2002,20(1):1-13.
[8]Zhao T,Nevatia R.Car Detection in Low Resolution Aerial Images[J].Image Vision Computing,2003,21:693-703.
[9]Ruskone R,Guigues L,Airault S,et al.Vehicle Detection on Aerial Images:A Structural Approach[C]//Proceedings of the 13th International Conference on Pattern Recognition,Vienna,1996.
[10]Zhao Yingshi.The Principle and Method of Analysis of Remote Sensing Application[M].Beijing:Science Press,2003:47-58.[赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:47-58.]
[11]Sharma G,Merry C J,Goel P,et al.Vehicle Detection in 1 m Resolution Satellite and Airborne Imagery[J].International Journal of Remote Sensing,2006,27(4):779-797.
[12]Eikvil L,Aurdal L,Koren H.Classification-based Vehicle Detection in High Resolution Satellite Images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2009,64:65-72.
[13]Sun Jiabing.Principles and Applications of Remote Sensing[M].Wuhan:Wuhan University Press,2003:171.[孙家炳.遥感原理与应用[M].武汉:武汉大学出版社,2003:171.]
[14]Alba-Flores R.Evaluation of the Use of High-resolution Satellite Imagery in Transportation Applications[R].Duluth,Minnesota:Department of Electrical and Computer Engineering University of Minnesota Duluth,2005.
[15]Larsen S ,Amlien J,Koren H,et al.Mapping Road Traffic Conditions Using High Resolution Satellite Images[C]//GEOBIA 2008- Pixels,Objects,Intelligence,Calgary Alberta,Canada,2008.The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,Vol.XXXVIII-4/C1.
[16]Beghdadi A,Lenegrate A,Delesegno P V.Entropic Thresholding Using a Block Source Model[J].Graphical Models and Image Processing,1995,57(3):197-205.
[17]Larsen S ,Salberg A.Vehicle Detection and Roadside Tree Shadow Removal in High Resolution Satellite Images[C]//GEOBIA 2010:Geographic Object based Image Analysis,Ghent,Belgium,2010.The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,XXXVIII-4/C7.
[18]Larsen S ,Salberg A.Automatic Vehicle Counts from Qu-ickbird Images[C]//2011 Joint Urban Remote Sensing Event,Munich,2011.
[19]Liu Jianxin.The Study of Algorithm about Vehicle Detection based on High Resolution Satellite Image[D].Dalian:Dalian Maritime University,2008.[刘建鑫.基于高分辨率卫星影像的车辆检测算法研究[D].大连:大连海事大学,2008.]
[20]Zheng Hong,Hu Xuemin.An Antibody Networks Approach for Vehicle Detection from High Resolution Satellite Imagery[J].Journal of Remote Sensing,2009,13(5):913-927.[郑宏,胡学敏.高分辨率卫星影像车辆检测的抗体网络[J].遥感学报,2009,13(5):913-927.]
[21]Tan Q L,Wei Q C,Yang S L,et al.Evaluation of Urban Road Vehicle Detection from High Resolution Remote Sensing Imagery Using Object-oriented Method[C]//2009 Joint Urban Remote Sensing Event,Shanghai,2009.
[22]Tan Q L,Wei Q,Hu J,et al.Road Vehicle Detection Using Fuzzy Logic Rule based Method[C]// FSKD 2010,Yantai,2010.
[23]Sun Qi.Research on Traffic Flow Parameters Detection from High Resolution Satellite Images[D].Beijing:Beijing Jiaotong University,2010.[孙琪.基于高分辨率卫星影像的交通流参数提取研究[D].北京:北京交通大学,2010.]
[24]Ye Famao,Su Lin,Li Shukai,et al.Review and Thought of Road Extraction from High Resolution Remote Sensing Images[J].Remote Sensing for Land & Resources,2006,(1):12-17.[叶发茂,苏林,李树楷,等.高分辨率遥感影像提取道路的方法综述与思考[J].国土资源遥感,2006,(1):12-17.]
[25]Gevers T,Smeulders A W M.Color based Object Recognition[J].Pattern Recognition,1999,32:453-464.
[26]Fang L Z,Qiong W Y,Sheng Y Z.A Method to Segment Moving Vehicle Cast Shadow based on Wavelet Transform[J].Pattern Recognition Letter,2008,29(16):2182-2188.
[27]Leitloff J,Hinz S,Stilla U.Vehicle Queue Detection in Satellite Images of Urban Areas[C]// Proceedings of the ISPRS joint conference 3rd International Symposium Remote Sensing and Data Fusion over Urban Areas (URBAN 2005) and 5th International Symposium Remote Sensing of Urban Areas (URS 2005),Tempe,AZ,USA,2005.
[28]Zhang Y,Xiong Z.Moving Vehicle Detection Using a Single Set of Quickbird Imagery[C]//ISPRS Commission VII Mid-term Symposium “Remote Sensing:From Pixels to Processes”,Enschede,2006.
[29]Liu W,Yamazaki F.Speed Detection of Moving Vehicles from One Scene of QuickBird Images[C]//2009 Joint Urban Remote Sensing Event,Shanghai,2009.

[1] 闫鹏飞,明冬萍. 尺度自适应的高分辨率遥感影像分水岭分割方法[J]. 遥感技术与应用, 2018, 33(2): 321-330.
[2] 周为峰,曹利,李小恕,程田飞. 沿海牡蛎养殖的WorldView-2影像融合方法评价[J]. 遥感技术与应用, 2018, 33(1): 103-109.
[3] 江东,陈帅,丁方宇,付晶莹,郝蒙蒙. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1): 143-150.
[4] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[5] 陈洋波,张涛,窦鹏,董礼明,陈华. 基于SVM的东莞市土地利用/覆被自动分类误差来源与后处理[J]. 遥感技术与应用, 2017, 32(5): 893-903.
[6] 林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
[7] 张晗,余超,苏林,王雅鹏,陈良富. 基于OMI卫星遥感评估2015年阅兵期间华北地区SO2和NO2减排成效[J]. 遥感技术与应用, 2017, 32(4): 734-742.
[8] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[9] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[10] 施佩荣,陈永富,刘华,吴云华,魏新,钟泽兵. 基于改进的面向对象遥感影像分类方法研究—以西藏米林县典型林区为例[J]. 遥感技术与应用, 2017, 32(3): 466-474.
[11] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[12] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[13] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[14] 郭俊如,宋军,鲍献文,李静. 东中国海遥感叶绿素数据重构方法研究[J]. 遥感技术与应用, 2016, 31(5): 939-949.
[15] 邓滢,张红,王超,刘萌. 结合纹理与极化分解的面向对象极化SAR水体提取方法[J]. 遥感技术与应用, 2016, 31(4): 714-723.