Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (2): 173-176    DOI: 10.11873/j.issn.1004-0323.2012.2.173
图像与数据处理     
基于特征点和最优路径的无人机影像拼接方法
何 敬,李永树
(西南交通大学地理信息工程中心,四川 成都 610031)
A Mosaic Method in Unmanned Aerial Vehicle Images based on Feature Points and Optimal Path
He Jing,Li Yongshu
(GIS Engineering Center of Southwest Jiaotong University,Chengdu 610031,China)
 全文: PDF(1362 KB)  
摘要:

利用SIFT算法对无人机影像进行匹配,采用距离阈值的方法剔除匹配后距离较近的特征点。为了降低误差累积对影像拼接效果的影响,提出了最佳基准影像的选择方法,同时将Dijkstra算法引入到拼接路径的搜索中,利用影像间的投影转换误差构建搜索权阵。结果表明:最优路径的拼接方法能有效避免投影误差较大的影像对后续拼接影像的影响,减少了影像投影转换次数,改善了影像的拼接效果。

关键词: 无人机影像SIFT最优路径影像拼接    
Abstract:

The SIFT algorithm was used in Unmanned Aerial Vehicle images matching,the distance threshold filter was used to remove too close feature points.In order to reduce the error accumulation which can effect on the results of image mosaic,and shorten the path splicing,an optimal base image selection method was introduced,meanwhile,the Dijkstra algorithm was introduced into the search of stitching path,and the project conversion errors between the two images were used to build the search array.The experimental results indicated that this optimal path method can avoid the influences of the image which has large projection error mosaic with the follow\|up images effectively,and reduce the number of image projection transformation,which can improve the mosaic effect.

Key words: Unmanned Aerial Vehicle images    SIFT    Optimal path    Image mosaic
收稿日期: 2011-07-12 出版日期: 2013-01-23
:  TP 75  
基金资助:

“十一五”国家科技支撑计划重大项目(2006BAJ05A13)。

通讯作者: 李永树(1957-),男,四川广元人,教授,博士生导师,主要从事GIS理论及应用、遥感数据处理与制图研究。Email:yshli@home.swjtu.edu.cn。   
作者简介: 何 敬(1983-),男,河南光山人,博士研究生,主要从事3S技术与系统集成研究。Email:xiao00yao@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

何 敬,李永树. 基于特征点和最优路径的无人机影像拼接方法[J]. 遥感技术与应用, 2012, 27(2): 173-176.

He Jing,Li Yongshu. A Mosaic Method in Unmanned Aerial Vehicle Images based on Feature Points and Optimal Path. Remote Sensing Technology and Application, 2012, 27(2): 173-176.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.2.173        http://www.rsta.ac.cn/CN/Y2012/V27/I2/173

[1]Lu Heng,Li Yongshu,Li Hechao,et al.Digital Processing of Unmanned Aerial Vehicle Image and Its Application in Reconstruction of Wenchuan Earthquake-hit Areas[J].Journal of Southwest Jiaotong University,2010,45(4):533-538.[鲁恒,李永树,李何超,等.无人机影像数字处理及在地震灾区重建中的应用[J].西南交通大学学报:自然科学版,2010,45(4):533-538.]
[2]Zhong Li,Hu Xiaofeng.Stitching Algorithm for Overlapping Imags[J].Journal of Image and Graphics,1998,5(5):367-370.[钟力,胡晓峰.重叠图像拼接算法[J].中国图象图形学报,1998,5(5):367-370.]
[3]Zhao Xiangyang,Du Limin.An Automatic and Robust Image Mosaic Algorithm[J].Journal of Image and Graphics,2004,9(4):417-422.[赵向阳,杜利民.一种全自动稳健的图像拼接融合算法[J].中国图象图形学报,2004,9(4):417-422.]
[4]Reddy B S,Chatterji B N.An FFT-based Technique for Translation,Rotation,and Scale-Invariant Image Registration[J].IEEE Transaction on Image Processing,1996,5(8):1266-1271.
[5]Szeliski R.Video Mosaics for Virtual Environments[J].IEEE Computer Graphics and Applications,1996,16(2):22-30.
[6]Peleg S,Rousso B,Rav-Achaetc A.Mosaic on Adaptive Manifolds[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2000,22(10):1144-1154.
[7]Brown M,Lowe D G.Recognizing Panoramas[C]//Proceedings of the IEEE Ninth International Conference on Computer Vision,Washington,DC,USA,2003,2:1218-1225.
[8]Lowe D G.Object Recognition from Local Scale-Invariant Features[C]//International Conference on Computer Vision,Corfu,Greece,1999,2:1150-1157.
[9]Lowe D G.Distinctive Image Features from Scale-Invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[10]Mikolajczyk K,Leibe B,Schiele B.Local Features for Object Class Recognition[C]//Proceedings of the IEEE Ninth International Conference on Computer Vision,Beijing,China,2005,2:1792-1799.
[11]Yang Changbao,Wang Kaiyi,Ma Shengzhong.Implementation of an Optimized Algorithms in the Shortest Path Analysis[J].Journal of Jilin University(Information Science Edition),2002,20(2):70-74.[杨长保,王开义,马生忠.一种最短路径分析优化算法的实现[J].吉林大学学报(信息科学版),2002,20(2):70-74.]

[1] 周在明,杨燕明,陈本清. 基于无人机影像的滩涂入侵种互花米草植被信息提取与覆盖度研究[J]. 遥感技术与应用, 2017, 32(4): 714-720.
[2] 张正健,李爱农,边金虎,赵伟,南希,靳华安,谭剑波. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62.
[3] 宋耀鑫,张丹丹,唐伶俐,李传荣,马灵玲. 基于ASIFT算法的低重叠度无人机影像拼接方法[J]. 遥感技术与应用, 2015, 30(4): 725-730.
[4] 侯鹏洋,季艳,高峰,胡蕾. 一种基于SIFT特征的快速逐层遥感图像配准方法[J]. 遥感技术与应用, 2014, 29(5): 873-877.
[5] 李政,李永树,唐敏. 一种求解无人机影像外方位角元素的方法[J]. 遥感技术与应用, 2014, 29(3): 506-510.
[6] 陈本清,杨燕明,郑凌虹,文洪涛. 基于SIFT和TPS算法的四旋翼无人机图像自动配准[J]. 遥感技术与应用, 2013, 28(4): 604-609.
[7] 欧阳能钧,李伟彤,韦蔚,潘晴. 基于SIFT与Contourlet变换的高分辨遥感图像配准[J]. 遥感技术与应用, 2013, 28(1): 58-64.
[8] 王生明,李永树,何敬. 一种改进的局部加权拟合校正方法[J]. 遥感技术与应用, 2013, 28(1): 85-89.
[9] 李松霖,范海生,陈秀万. 基于特征线匹配的城市建筑物识别方法研究[J]. 遥感技术与应用, 2012, 27(2): 190-196.
[10] 翟涌光, 王耀强. 基于点特征的多源遥感影像高精度自动配准方法[J]. 遥感技术与应用, 2010, 25(3): 404-409.
[11] 程焱,周焰,林洪涛,潘恒辉. 基于SIFT特征遥感影像自动配准与拼接[J]. 遥感技术与应用, 2008, 23(6): 721-728.
[12] 霍春雷,周志鑫,刘青山,卢汉清. 基于SIFT特征和广义紧互对原型对距离的遥感图像配准方法[J]. 遥感技术与应用, 2007, 22(4): 524-530.