Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (4): 542-548    DOI: 10.11873/j.issn.1004-0323.2012.4.542
图像与数据处理     
FY-3B微波成像仪图像质量评价
吴 琼,杨 磊,杨 虎
(国家卫星气象中心,北京 100081)
Image Quality Evaluation of MWRI from FY-3B Satellite
Wu Qiong,Yang Lei,Yang Hu
(National Satellite Meteorological Center,Beijing 100081,China)
 全文: PDF(4194 KB)  
摘要:

2010年11月5日发射升空的我国新一代极轨气象卫星FY-3B (“风云三号”B星)携带的微波成像仪,可以全天候获取来自地球表面和大气的电磁辐射信息。针对在轨测试期间微波成像仪1.7 s和1.8 s两种扫描周期,详细比较了二者图像质量的差异。在图像质量评价研究中,使用统计方法比较了图像的动态范围;通过功率谱计算,对比了图像的空间纹理特征;通过信息熵计算,分析了图像信息量的不同;此外,还研究了图像的对比度以及通道间配准的情况。结果表明:1.7 s图像的空间纹理结构、高频图像的对比度以及通道间配准明显优于1.8 s,表明1.7 s扫描周期下的图像质量优于1.8 s,该结论可以作为微波成像仪仪器指标设计的参考。

关键词: 微波成像仪图像质量评价功率谱信息熵调制传递函数    
Abstract:

In November 5th 2010,new generation meteorological FY-3B satellite successfully was launched,Microwave Radiation Imager (MWRI) can all day get radiation information from earth surface and atmosphere.Two scan periods were set during orbit test,1.7 s and 1.8 s separately.In this paper,image quality differences were analyzed in detail.On the study of image quality evaluation,statistical method was used to compare the dynamic range of image.By using power spectrum,space texture of image can be contrasted.Whats more,information entropy was used as a tool to evaluate the information magnitude.Finally,the image contrast and match situation among different channels were studied.The results show that 1.7 s is obviously better than 1.8 s in space texture,channel match and contrast,which means the image quality of 1.7 s is better than 1.8 s.The conclusion can be an important reference of MWRI instrument parameter design.

Key words: Microwave Radiation Imager    Image quality evaluation    Power Spectrum    Information entropy    Modulation Transfer Function (MTF)
收稿日期: 2011-08-19 出版日期: 2012-08-24
:  P 407.8  
基金资助:

公益性行业(气象)科研专项经费项目“星载降水测量雷达数据处理与应用关键技术研发”(GYHY201006050)。

作者简介: 吴 琼(1985-),女,江苏常州人,硕士,助理工程师,主要从事遥感与雷达气象方面的研究。Email:wuqiong@cma.gov.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴 琼,杨 磊,杨 虎. FY-3B微波成像仪图像质量评价[J]. 遥感技术与应用, 2012, 27(4): 542-548.

Wu Qiong,Yang Lei,Yang Hu. Image Quality Evaluation of MWRI from FY-3B Satellite. Remote Sensing Technology and Application, 2012, 27(4): 542-548.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.4.542        http://www.rsta.ac.cn/CN/Y2012/V27/I4/542

[1]Yang Hu,Shi Jianchen.On the Estimation of Land Surface Parameters by Using FY-3A Microwave Radiometer Imager (MWRI)[J].Remote Sensing Technology and Application,2005,20(1):194-200.[杨虎,施建成.FY-3A微波成像仪地表参数反演研究[J].遥感技术与应用,2005,20(1):194-200.]
[2]Yang Zhongdong,Gu Songyan,Qiu Hong,et al.CBERS-1s CCD Image Quality Evaluating and Cross Calibrating Study[J].Journal of Remote Sensing,2004,8(2):113-120.[杨忠东,谷松岩,邱红,等.中巴地球资源一号卫星CCD图像质量评价和交叉定标研究[J].遥感学报,2004,8(2):113-120.]
[3]Ma Demin.Quality Evaluating of High Spectrum Pictures[J].Infrared,2004,(7):18-23.[马德敏.高光谱图像质量评价[J].红外月刊,2004,(7):18-23.]
[4]Wang Qinjun,Tian Qingjiu.Quality Evaluation of LISS3 Image from IRS-P6 Satellite[J].Geography and Geo-Information Science,2007,23(3):11-14.[王钦军,田庆久.IRS-P6卫星LISS3图像数据质量评价[J].地理与地理信息科学,2007,23(3):11-14.]
[5]Guo Qiang,Li Xinyao,Chen Guilin.On-orbit MTF Evaluation for Thermal Infrared Band of FY-2 Satellite and Its Application in Image Quality Improvements[J].Journal of Infrared and Millimeter Waves,2009,28(5):335-341.[郭强,李欣耀,陈桂林.FY-2卫星热红外波段MTF在轨评价及其在改进图像质量中的应用[J].红外与毫米波学报,2009,28(5):335-341.]
[6]Sun Lu,Bi Duyan.The Improved Iterative Algorithm based on Entropy for Image Threshold Segmentation[ J].Computer Applications and Software,2008,25(10):225-226,238.[孙路,毕笃彦.基于信息熵的图像分割阈值迭代改进算法[J].计算机应用与软件,2008,25(10):225-226,238.]
[7]Xue Dongjian,Zhang Donghui,He Zhangwei,et al.Application of Multi-source Remote Sensing Image Fusion in Geohazard Investigation[J].Remote Sensing Technology and Application,2011,26(5):664-669.[薛东剑,张东辉,何政伟,等.多源遥感影像融合技术在地质灾害中的应用[J].遥感技术与应用,2011,26(5):664-669.]
[8]Ping Ping,Gao Weiwei,Wang Bo.MTF-based Resources for Satellite Image Restoration[J].Computer Knowledge and Technology,2010,6(17):4750-4751.[平平,高维维,王博.基于MTF的资源卫星图像恢复[J].电脑知识与技术,2010,6(17):4750-4751.]
[9]Zhao Zhanping,Fu Xingke,Huang Qiaolin.On Orbit MTF Test Research of Remote Sensors based on Knife-edge Method[J].Spacecraft Recovery & Remote Sensing,2009,30(2):37-43.[赵占平,付兴科,黄巧林.基于刃边法的航天光学遥感器在轨MTF测试[J].航天返回与遥感,2009,30(2):37-43.]
[10]Li Xiaobin,Zhou Chunping,Chi Yunfeng.Simulation of In-orbit Satellite Image MTF Measurement Using Edge Method[J].Image Technology,2007,(6):33-39.[李晓斌,周春平,迟云峰.刃边法计算在轨卫星图像MTF的仿真分析[J].影像技术,2007,(6):33-39.]
[11]Gu Songyan,Fan Tianxi.Power Spectrum Analysis on the Image Quality of FY-2 & GMS-5 IR Channels[J].Quarterly Journal of Applied Meteorology,1999,10(3):374-378.[谷松岩,范天锡.FY-2和GMS-5红外通道遥感图像质量的功率谱分析[J].应用气象学报,1999,10(3):374-378.]

[1] 吴兴,张霞,孙雪剑,张立福,戚文超. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
[2] 陈卫英,刘高峰,何嘉恺,潘莉. 降低微波成像仪接收机非线性偏差方法研究[J]. 遥感技术与应用, 2017, 32(1): 121-125.
[3] 武黎黎,李晓峰,赵凯,郑兴明,丁艳玲,李洋洋,任建华. 被动微波雪深反演算法在东北地区的时空分析与验证[J]. 遥感技术与应用, 2015, 30(3): 565-572.
[4] 侯小刚,张璞,郑照军,李帅. 基于多源数据的阿勒泰地区雪深反演研究[J]. 遥感技术与应用, 2015, 30(1): 178-185.
[5] 梁军民,李立钢. 一种应急救灾飞艇部署与规划方法研究[J]. 遥感技术与应用, 2014, 29(4): 639-645.
[6] 王焕萍,刘勇. 基于窗口傅立叶变换功率谱分析的盐田地区高分辨率遥感影像分割分类方法探讨[J]. 遥感技术与应用, 2011, 26(2): 233-238.
[7] 胡潭高,张锦水,潘耀忠,朱文泉. 基于灰度值限定信息熵的图像检索方法[J]. 遥感技术与应用, 2007, 22(4): 543-548.
[8] 潘 碑,吴 季. 干涉式被动微波成像仪二维频谱特征及误差分析[J]. 遥感技术与应用, 2007, 22(3): 410-415.
[9] 孙知文,施建成,杨 虎,蒋玲梅,彭 亮. 风云三号微波成像仪积雪参数反演算法初步研究[J]. 遥感技术与应用, 2007, 22(2): 264-267.
[10] 高 飞 张俊荣. 星载微波成像仪接收通道的仿真研究[J]. 遥感技术与应用, 1998, 13(3): 24-29.
[11] 高 飞 张俊荣. 星载微波成像仪数字仿真技术[J]. 遥感技术与应用, 1997, 12(4): 21-25.