Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (5): 770-777    DOI: 10.11873/j.issn.1004-0323.2012.5.770
遥感应用     
基于面向对象方法的沙化土地遥感信息提取技术研究
王志波1,2,高志海1,王琫瑜1,徐先英2,白黎娜1,王红岩1,吴俊君1,孙 斌1
(1.中国林业科学研究院资源信息所,北京 100091;2.甘肃省治沙研究所,甘肃 武威 733000)
The Study of Extracting Sandy Lands Information from Remote Sensing Image based on Object-oriented Method
Wang Zhibo1,2,Gao Zhihai1,Wang Fengyu1,Xu Xianying2,Bai Lina1,Wang Hongyan1,Wu Junjun1,Sun Bin1
(1.Research Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Beijing 100091,China;2.Gansu Desert Control Research Institute,Wuwei 733000,China)
 全文: PDF(3077 KB)  
摘要:

针对基于像元光谱特征提取沙化土地信息分类精度偏低的问题,以Landsat\|5 TM为数据源,基于面向对象的方法对沙化土地遥感信息提取技术进行研究。首先采用多尺度分割法对影像进行分割以获得同质区域,然后结合野外调查数据制成不同地物类型的多种特征图,从而确定提取目标地物的特征并建立沙化和非沙化地物提取决策树,最后对影像进行模糊分类,并对分类结果进行精度评价。结果表明,基于面向对象提取沙化土地信息的总精度达84.89%,Kappa系数为0.8077。研究结果为后续深入研究奠定了基础。

关键词: 沙化土地面向对象多尺度影像分割    
Abstract:

For the problem of low classification accuracy of sandy lands based on spectral feature of remote sensing images,a methodology by applying object-oriented method for extracting sandy lands information was studied by Landsat-5 TM image data in this paper.First,the mult-scale image segmentation was conducted to obtain homogeneous areas of objects.Then,based on field survey data,a variety of feature diagrams of different land surface types were made to select the features of target objects and establish the decision tree for classification of sandy and non-sandy lands.Finally,the fuzzy image classification with the decision tree was implemented,accuracy of classification was validated by ground truth data.The result showed that the overall accuracy reached 84.89% and the Kappa coefficient was 0.8077,which indicated that the object-oriented method for extracting sandy lands information could provide a foundation for further study on extraction of sandy land information.

Key words: Sandy lands    Object-oriented method    Multi-scale image segmentation
收稿日期: 2011-12-10 出版日期: 2012-10-17
:  TP 79  
基金资助:

国家“十二五”科技支撑计划项目(2011BAH23B04)资助。

作者简介: 王志波(1985-),男,山东威海人,硕士研究生,主要从事荒漠化遥感应用研究。Email: wzb1231@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王志波,高志海,王琫瑜,徐先英,白黎娜,王红岩,吴俊君,孙 斌. 基于面向对象方法的沙化土地遥感信息提取技术研究[J]. 遥感技术与应用, 2012, 27(5): 770-777.

Wang Zhibo,Gao Zhihai,Wang Fengyu,Xu Xianying,Bai Lina,Wang Hongyan. The Study of Extracting Sandy Lands Information from Remote Sensing Image based on Object-oriented Method. Remote Sensing Technology and Application, 2012, 27(5): 770-777.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.5.770        http://www.rsta.ac.cn/CN/Y2012/V27/I5/770

[1]State Forestry Administration.The National Desertification Monitoring Technical Regulations[S].1998.[国家林业局.全国荒漠化监测主要技术规定[S].1998.]
[2]Wang Xiaohui,Li Zengyuan,Gao Zhihai,et al.Information Extraction of Sandy Land[J].Scientia Silvae Sinicae,2005,41(3):82-87.[王晓慧,李增元,高志海,等.沙化土地信息提取研究[J].林业科学,2005,41(3):82-87.]
[3]Wu Jian,Peng Daoli.Advances in Researches on Land Desertification Remote Sensing Information-extracting Technology[J].World Forestry Research,2009,22(4):47-52.[吴见,彭道黎.土地沙化遥感信息提取技术研究进展[J].世界林业研究,2009,22(4):47-52.]
[4]Oruc M,Marangoz A M,Buyuksalih G.Comparison of Pixel-based and Object-oriented Classification Approaches Using Landsat-7 ETM Spectral Bands[C]//International Society for Photogrammetry and Remote Sensing 24th Congress,Istanbul,2004,1118-1123.
[5]GmbH T G.Trimble eCognition User Guide[S/OL].Http//:www.eCognition.com.2010.
[6]Yu Q,Gong P,Clinton N,et al.Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery[J].Photogrammetric Engineering and Remote Sensing,2006,72(7):799.
[7]Du Fenglan,Tian Qingjiu,Xia Xueqi,et al.Object-oriented Image Classification Analysis and Evaluation[J].Remote Sensing Technology and Application,2004,19(1):20-23.[杜〖HJ2mm〗凤兰,田庆久,夏学齐,等.面向对象的地物分类法分析与评价[J].遥感技术与应用,2004,19(1):20-23.]
[8]Chen Yunhao,Feng Tong,Shi Peijun,et al.Classification of Remote Sensing Image based on Object Oriented and Class Rules[J].Geometrics and Information Science of Wuhan University,2006,31(4):316-320.[陈云浩,冯通,史培军,等.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320.]
[9]Chen Qiuxiao,Luo Jiancheng,Zhou Chenghu,et al.Classification of Remotely Sensed Imagery Using Multi-features based Approach[J].Journal of Remote Sensing,2004,8(3):239-245.[陈秋晓,骆剑承,周成虎,等.基于多特征的遥感影像分类方法[J].遥感学报,2004,8(3):239-245.]
[10]Zhang Genlong,Feng Yiming,Jia Jianhua,et al.Technology Study in Divison of Forest Resources based on the High-spatial Resolution Remote Sensing Images[J].Remote Sensing Technology and Application,2010,25(1):132-137.[张艮龙,冯益明,贾建华,等.基于高空间分辨率影像的小班区划技术研究[J].遥感技术与应用,2010,25(1):132-137.]
[11]Zhang Jun,Yu Qingguo,Hou Jiahuai.Object-oriented Classification and Information Extraction based on High Spatial Resolution Remote Sensing Image[J].Remote Sensing Technology and Application,2010,25(3):112-117.[张俊,于庆国,侯家槐.面向对象的高分辨率影像分类与信息提取[J].遥感技术与应用,2010,25(3):112-117.]
[12]Ge Chunqing,Zhang Linghan,Yang Jie.Object-oriented Classification of Remote Sensing Image based on Decision Trees[J].Remote Sensing Information,2009,5(2):86-90.[葛春青,张凌寒,杨杰.基于决策树规则的面向对象遥感影像分类[J].遥感信息,2009,5(2):86-90.]
[13]Li Min,Cui Shiyong,Li Chengming,et al.Object Oriented Information Extraction from High Resolution Remote Sensing Imagery-Taking the Extraction of Farmland for an Example[J].Remote Sensing Information,2008,4(6):63-66.[李敏,崔世勇,李成名,等.面向对象的高分辨率遥感影像信息提取——以耕地提取为例[J].遥感信息,2008,4(6):63-66.]
[14]You Liping.Object-oriented High-resolution Remote Sensing Image Classification[D] Fujian:Fujian Normal University,2007.[游丽平.面向对象的高分辨率遥感影像分类方法研究[D].福建:福建师范大学,2007.]
[15]Qi Y,Wu J.Effects of Changing Spatial Resolution on the Results of Landscape Pattern Analysis Using Spatial Autocorrelation Indices[J].Landscape Ecology,1996,11(1):39-49.
[16]Wu J,Loucks O L.From Balance of Nature to Hierarchical Patch Dynamics:A Paradigm Shift in Ecology[J].Quarterly Review of Biology,1995:439-466.
[17]Yu Huan,Zhang Shuqing,Kong Bo,et al.Optimal Segmentation Scale Selection for Object-oriented Remote Sensing Image Classification[J].Journal of Image and Graphics,2010,15(2):352-360.[于欢,张树清,孔博,等.面向对象遥感影像分类的最优分割尺度选择研究[J].中国图象图形学报,2010,15(2):352-360.]

[1] 闫鹏飞,明冬萍. 尺度自适应的高分辨率遥感影像分水岭分割方法[J]. 遥感技术与应用, 2018, 33(2): 321-330.
[2] 江东,陈帅,丁方宇,付晶莹,郝蒙蒙. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1): 143-150.
[3] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[4] 林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
[5] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[6] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[7] 施佩荣,陈永富,刘华,吴云华,魏新,钟泽兵. 基于改进的面向对象遥感影像分类方法研究—以西藏米林县典型林区为例[J]. 遥感技术与应用, 2017, 32(3): 466-474.
[8] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[9] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[10] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[11] 邓滢,张红,王超,刘萌. 结合纹理与极化分解的面向对象极化SAR水体提取方法[J]. 遥感技术与应用, 2016, 31(4): 714-723.
[12] 王娟,廖静娟,沈国状,许涛. 基于面向对象技术的鄱阳湖湿地地物分类研究[J]. 遥感技术与应用, 2016, 31(3): 543-550.
[13] 王嘉芃,刘婷,俞志强,胡潭高,张登荣,寻丹丹,王冬海. 基于COSMOGSkyMed和SPOTG5的城镇洪水淹没信息快速提取研究[J]. 遥感技术与应用, 2016, 31(3): 564-571.
[14] 宋亚婷,江东,黄耀欢,万华伟. 基于面向对象方法的露天煤矿用地类型提取优先级分析[J]. 遥感技术与应用, 2016, 31(3): 572-579.
[15] 满卫东,李春景,王宗明,贾明明,毛德华,刘明月,路春燕. 基于面向对象分类方法的乌苏里江流域中俄跨境区域湿地景观动态研究[J]. 遥感技术与应用, 2016, 31(2): 378-387.