Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (5): 784-789    DOI: 10.11873/j.issn.1004-0323.2012.5.784
遥感应用     
古尔班通古特沙漠梭梭林地NDVI的时间效应—基于物候变化和MODIS图像的研究
黄铁成,陈蜀江,侯 敏,时珍霞,周 敏,彭佳明,陈添乐,罗晓琴
(新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054)
The NDVI Time Effect of Haloxylon Aammodendron Forest in Gurbantunggut Desert:Based on Phenological Changes and the Image of MODIS
Huang Tiecheng,Chen Shujiang,Hou Min,Shi Zhenxia,Zhou Min,Peng Jiaming,Chen Tianle,Luo Xiaoqin
(College of Geography Science and Tourism,Xinjiang Normal University,Urumqi 830054,China)
 全文: PDF(1412 KB)  
摘要:

遥感图像信息提取研究是遥感研究中的一个关键问题,也是遥感研究的热点和难点之一。使用2000~2010年MODIS-NDVI 16 d合成数据和物候记录,借助GIS空间分析和统计分析方法,重构了古尔班通古特沙漠梭梭林地Mean NDVI时间序列特征曲线。分析物候与Mean NDVI时间序列表明,梭梭林地内的短命植物生长期早于梭梭。研究梭梭林地Mean NDVI时间序列曲线发现,曲线中存在一个明显区别于其他地物的特征点,该点可以作为梭梭林地信息“诊断点”。根据“诊断点”特征构建了梭梭林地特征指数模型(HFFI),进而反演了古尔班通古特沙漠梭梭林地信息,并利用地面实际观测资料进行验证,结果表明分类精度达到83%。

关键词: 梭梭林地NDVI时间效应物候古尔班通古特沙漠    
Abstract:

Remote sensing image information extraction research is one of the key problems of remote sensing research,it is also one of the hot and difficult points in remote sensing research.With the aid of the GIS spatial analysis and statistical analysis method,the Haloxylon Aammodendron forest Mean NDVI time series characteristic curve were reconstructed in the Gurbantunggut Desert by using the NASA/ MODIS-NDVI16 days synthetic data (from 2000 to 2010) and phenology record.Analysis of phenological and Mean NDVI time series,the result showed that the Ephemeral plants (or short-lived plants) under the Haloxylon Aammodendron forest growth period is earlier than Haloxylon Aammodendron.Research of Mean NDVI time series curve,showed that there is a feature point that obviously different from other features in the curve,which can be used as the “diagnosis point” of Haloxylon Aammodendron.A model of Haloxylon Aammodendron forest features index(HFFI) was developed based on the “diagnosis point” characteristics.Retrieved the information of Haloxylon Aammodendron forest in the Gurbantunggut Desert from HFFI.And utilizing the data of the ground practical observation validation,the results indicate that the classification accuracy reached 83%.

Key words: Haloxylon Aammodendron forest    NDVI    Time effect    Phenology    Gurbantunggut desert
收稿日期: 2011-12-29 出版日期: 2012-10-17
:  TP 79  
基金资助:

新疆师范大学2011~2012年度研究生科技创新立项项目(20111210),国家沙漠气象研究基金(sqj2008001)资助。

作者简介: 黄铁成(1986-),男,河南淮阳人,硕士研究生,主要从事遥感与地理信息系统研究。Email:huangtiechengl@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄铁成,陈蜀江,侯 敏,时珍霞,周 敏,彭佳明,陈添乐,罗晓琴. 古尔班通古特沙漠梭梭林地NDVI的时间效应—基于物候变化和MODIS图像的研究[J]. 遥感技术与应用, 2012, 27(5): 784-789.

Huang Tiecheng,Chen Shujiang,Hou Min,Shi Zhenxia,Zhou Min,Peng Jiaming,Chen Tian. The NDVI Time Effect of Haloxylon Aammodendron Forest in Gurbantunggut Desert:Based on Phenological Changes and the Image of MODIS. Remote Sensing Technology and Application, 2012, 27(5): 784-789.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.5.784        http://www.rsta.ac.cn/CN/Y2012/V27/I5/784

[1]Zhao Yingshi.The Principle and Method of Remote Sensing Application and Analysis[M].Beijing:China Sciences and Technology Press,2003:374-380.[赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:374-380.]
[2]Lin Zhonghui,Mo Xingguo,Xue Ling.With NDVI Time Series to Determine the Crop Phonological and the Crop Types[C]//The 14th National Remote Sensing Symposium Papers Series.Qing Dao China,2003,30.[林忠辉,莫兴国,薛玲.用NDVI时间序列确定作物物侯和作物类型判别[C]//第十四届全国遥感技术学术交流会论文摘要集.中国青岛,2003,30.]
[3]Chang Shouzhi,Wang Zongming,Song Kaishan,et al.Monitoring Cropland Phenology in Sanjiang Plain based on NDVI Data[J].Remote Sensing Technology and Application,2011,26(1):82-88.[常守志,王宗明,宋开山,等.基于NDVI数据的三江平原农田物候监测[J].遥感技术与应用,2011,26(1):82-88.]
[4]Gong Pan.Study on Land Cover Classification based on Phenological Characteristic Parameters [J].Journal of Anhui Agricultural Sciences,2010,38(11):5744-5746.[宫攀.基于物候特征参数的土地覆盖分类研究—以东北地区为例[J].安徽农业科学,2010,38(11):5744-5746.]
[5]Gong Pan.Vegetation Classification based on Phenology Indices Derived from MODIS Data in Northeastern China [J].Resources Science,2010,32(6):1154-1160.[宫攀.基于MODIS数据关键物候特征参数的东北地区植被覆盖分类[J].资源科学,2010,32(6):1154-1160.]
[6]Guo Fenfen,Fan Jianrong,Bian Jinhu,et al.Grassland Types Identification based on Time-series MODIS NDVI Data in Northern Tibet[J].Remote Sensing Technology and Application,2011,26(6):821-826.[郭芬芬,范建容,边金虎,等.基于MODIS NDVI 时间序列数据的藏北草地类型识别[J].遥感技术与应用,2011,26(6):821-826.] 
[7]Miao Cuicui,Jiang Nan,Peng Shikui,et al.Extraction of Paddy Land Area based on NDVI Time-series Data:Taking Jiangsu Province as an Example[J].Journal of Geo-information Science,2011,13(2):273-280.[苗翠翠,江南,彭世揆,等.基于NDVI时序数据的水稻种植面积遥感监测分析——以江苏省为例[J].地球信息科学学报,2011,13(2):273-280.]
[8]Miao Cuicui.Based on NDVI Time Series and Phenological Essential Information in Paddy Rice Area Extraction Research[D].Nanjing:Nanjing Forest University,2010.[苗翠翠.基于NDVI时间序列的水稻面积提取研究[D].南京:南京林业大学,2010.]
[9]Zhou Kui,Zhao Lin.Xinjiang Forest[M].Beijing:China Forestry Press,1989:270-296.[周魁,赵林.新疆森林[M].北京:中国林业出版社,1989:270-296.]
[10]Bian Jinhu,Li Ainong,Song Mengqiang,et al.Reconstruction of NDVI Time-series Datasets of MODIS based on Savitzky-Golay Filter[J].Journal of Remote Sensing,2010,14(4):725-741.[边金虎,李爱农,宋孟强,等.MODIS植被指数时间序列Savitzky-Golay滤波算法重构[J].遥感学报,2010,14(4):725-741.]
[11]Gutman G,Lgnatov A.Global Land Monitoring from AVHRR:Potential and Limitations[J].International Journal of Remote Sensing,1995,16:2301-2309.〖JP〗
[12]Cihlar J,Ly H,Li Z Q,et al.Multitemporal,Multichannel AVHRR Data Sets for Land Biosphere Studies:Artifacts and Corrections[J].Remote Sensing of Environment,1997,60:35-57.
[13]Lin Zhonghui,Mo Xingguo.Phenologies from Harmonics Analysis of AVHRR NDVI Time Series[J].Transactions of the Chinese Society of Agricultural Engineering,2006,22(12):138-144.[林忠辉,莫兴国.NDVI时间序列谐波分析与地表物候信息获取[J].农业工程学报,2006,22(12):138-144.]
[14]Gu Juan,Li Xin,Huang Chunlin.Research on the Reconstructing of Time-series NDVI Data[J].Remote Sensing Technology and Application,2006,21(4):391-395.[顾娟,李新,黄春林.NDVI时间序列数据集重建方法述评[J].遥感技术与应用,2006,21(4):391-395.]
[15]The Chinese Academy of Sciences Comprehensive Expedition in Xinjiang.Xinjiang Vegetation and Its Utilization[M].Beijing:China Science and Technology Press,1978,102-110.[中国科学院新疆综合考察队.新疆植被及其利用[M].北京:科学出版社,1978,102-110.]

[1] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[2] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[3] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[4] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[5] 王佳鹏,施润和,张超,刘浦东,曾毓燕. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6): 1056-1063.
[6] 杨涛,黄法融,李倩,白磊,李兰海. 新疆北部植被生长季NDVI时空变化及其与冬季降雪的关系[J]. 遥感技术与应用, 2017, 32(6): 1132-1140.
[7] 包刚,包玉龙,阿拉腾图娅,包玉海,覃志豪,王牧兰,周义. 1982~2011年蒙古高原植被物候时空动态变化[J]. 遥感技术与应用, 2017, 32(5): 866-874.
[8] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[9] 秦俊,冷寒冰,赵广琦,景军,周坚华. 物候和波谱—位置分析在城镇绿化植物群分类中的应用[J]. 遥感技术与应用, 2017, 32(5): 948-957.
[10] 周金霖,马明国,肖青,闻建光. 西南地区植被覆盖动态及其与气候因子的关系[J]. 遥感技术与应用, 2017, 32(5): 966-972.
[11] 方雨晨,王培燕,田庆久. 不同覆盖度下小麦农田土壤对NDVI影响模拟分析[J]. 遥感技术与应用, 2017, 32(4): 660-666.
[12] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[13] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.
[14] 李洛晞,沈润平,李鑫慧,郭佳. 基于MODIS时间序列森林扰动监测指数比较研究[J]. 遥感技术与应用, 2016, 31(6): 1083-1090.
[15] 冯莉,李柳华,郭松,卢荻. HJ-1A NDVI与MODIS NDVI时间序列提取植被物候特征对比研究[J]. 遥感技术与应用, 2016, 31(6): 1158-1166.