Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (6): 857-864    DOI: 10.11873/j.issn.1004-0323.2012.6.857
图像与数据处理     
基于遥感案例推理的海岸带养殖信息提取
刘鹏1,2,杜云艳1
(1.中国科学院地理科学与资源研究所,北京 100101;2.中国科学院大学,北京 100049)
A CBR Approach for Extracting Coastal Aquaculture Area
Liu Peng1,2,Du Yunyan1
(1.State key Laboratory of Resources and Environmental Information System,Institute of Geographic Science and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;2.University of Chinse Academy of Sciences,Beijing 100049,China)
 全文: PDF(3766 KB)  
摘要:

目前基于目视解释或光谱分类的养殖信息提取效率低,难以克服由于地物混杂带来的“椒盐”噪声现象且难以融合地学知识。针对养殖信息提取中存在的问题,首先在分析现有养殖信息提取方法和案例推理CBR(Case\|Based Reasoning)用于遥感图像处理的基础上,提出基于遥感案例推理的海岸带养殖信息提取的研究思路;其次,结合养殖区域的空间特征和属性特征,构建案例的表达模型以及CBR相似性推理模型;最后,对不属于案例构建区的粤西沙田镇进行养殖信息提取的CBR实验,精度达到84.56%。对比CBR方法和传统监督分类方法可知,CBR方法是实现海岸带养殖信息快速准确提取的一种有效手段。

关键词: 案例推理主成分分析多尺度分割海岸带养殖    
Abstract:

Sea reclamation works and fish farming are increasingly common in coastal zones,and how to accurately and rapidly extract the coastal aquaculture area is important for the development of coastal zones.This paper discusses a CBR (Case-Based Reasoning) method.Firstly,using a 10 meter resolution of a multi-spectral remote sensing image of Eastern Guangdong over ten thousands of spatial,spectral,shape and texture features were extracted based on the 1∶50 000 standard framing of land use thematic data and by using image analysis.Then nine optimized features were selected using the Principal Component Analysis (PCA) and the construction of a case base was accomplished based on these.After that,a multi-scale image segmentation was performed on the 2.5 meter resolution of a fused image of the test area,which is located on the Western Guangdong coast,and CBR classification was applied on all the segmented image objects.In the end,the classification accuracy was evaluated.The CBR classifier classifies an aquaculture area within coastal belts with an accuracy of 84.56%,in contrast to that the accuracy of the Maximum Likelihood Classifier (MLC) is 82.5%.The CBR method outperforms the MLC by 2.2% in prediction accuracy.The advantages of the CBR approach are obvious,particularly in the areas that are far away from the coastlines.In conclusion,the CBR approach could be successfully applied to the extraction of coastal aquaculture areas.

Key words: Case-Based Reasoning(CBR)    Principal Component Analysis(PCA)    Multi-scale segmentation    Coastal aquaculture
收稿日期: 2011-11-22 出版日期: 2013-06-25
:  TP 79  
基金资助:

国家科技支撑项目(2011BAH23B04)。

通讯作者: 杜云艳(1973-),女,河南信阳人,副研究员,硕士生导师,主要从事空间数据挖掘研究。Email:duyy@lreis.ac.cn。   
作者简介: 刘鹏(1985-),男,湖北孝感人,硕士研究生,主要从事遥感信息智能提取研究。Email:liupeng@lreis.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘鹏
杜云艳

引用本文:

刘鹏,杜云艳. 基于遥感案例推理的海岸带养殖信息提取[J]. 遥感技术与应用, 2012, 27(6): 857-864.

Liu Peng,Du Yunyan . A CBR Approach for Extracting Coastal Aquaculture Area. Remote Sensing Technology and Application, 2012, 27(6): 857-864.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.6.857        http://www.rsta.ac.cn/CN/Y2012/V27/I6/857

[1]Fan Jianyong,Huang Haijun,Fan Hui,et al.Extracting Aquaculture Area with Radarsat-1[J].Marine Sciences,2005,29(10):44-47.[樊建勇,黄海军,樊辉,等.利用Radarsat-1数据提取海水养殖区面积[J].海洋科学,2005,29(10):44-47.]

[2]Zhou Xiaocheng,Wang Xiaoqin,Xiang Tianliang,et al.Method of Automatic Extracting Seaside Aquaculture Land based on ASTER Remote Sensing Image[J].Wetland Science,2006,4(1):64-68.[周小成,汪小钦,向天梁,等.基于 ASTER 影像的近海水产养殖信息自动提取方法[J].湿地科学,2006.4(1):64-68.]

[3]Zhou Xiaocheng,Wang Xiaoqin,Xiang Tianliang,et al.Met-h〖JP2〗od of Automatic Extracting Seaside Aquaculture Land based on ASTER Remote Sensing Image[C]// Fifteenth Session of the National Remote Sensing Symposium.2005.[周小成,汪小钦,向天梁,等.基于ASTER影像的水产养殖信息自动提取方法[C]//第十五届全国遥感技术学术交流会论文摘要集,2005.]

[4]Xie Yulin,Wang Min,Zhang Xinyue.An Object-oriented Approach for Extracting Farm Waters within Coastal Belts[J].Remote Sensing Technology and Application,2009,24(1):68-72.[谢玉林,汪闽,张新月.面向对象的海岸带养殖水域提取[J].遥感技术与应用,2009,24(1):68-72.]

[5]Du Yunyan,Shi Zhongzhi.Theoretic and Appliation Research of 〖HJ1.9mm〗Geo-case based Reasoning[J].Acta Geographica Sinica,2002,57(2):151-158.[杜云艳,史忠植.地理案例推理及其应用[J].地理学报,2002,57(2):151-158.]

[6]Grimnes M,Aamodt A.A Two Layer Case-based Reasoning Architecture for Medical Image Understanding[C]//Proceedings of the 3rd European Workshop on Case—Based Reasoning,Berlin,1996.

[7]Perner P.An Architecture for a CBR Image Segmentation Sy-stem[J].Engineering Applications of Artificial Intelligence,1999,12(6):749-759.

[8]Frucci M,Perner P,Di Baja G S.Case-Based Reasoning for Image Segmentation[J].International Journal of Pattern Recognition and Artificial Intelligence,2008,22(5):829-842.[9]Perner P.Different Learning Strategies in a Case-Based Reasoning System for Image Interpretation[C]// Smith B,Cunningham P,eds.Advances in Case-Based Reasoning.Berlin:Springer,1998:251-261.

[10]Frucci M,Perner P,Di Baja G S.Case-Based Reasoning for Image Segmentation by Watershed Transformation[C]// Perner P,eds.Case-Based Reasoning on Images and Signals.Berlin:Springer,2008:319-353.

[11]Perner P.Using CBR Learning for the Low-level and High-level Unit of a Image Interpretation System[C]//Sameer S,Nabeel M,Walter K,eds.Advances in Pattern Recognition.Berlin:Springer,1998:45-54.

[12]Perner P.Prototype-based Classification[J].Applied Intelligence,2008,28(3):238-246.

[13]Perner P.Concepts for Novelty Detection and Handling based on a Case-Based Reasoning Process Scheme[C]// Perner P,eds.Advances in Data Mining.Theoretical Aspects and Applications,2007:21-33.

[14]Li Xia,Ye Jiaan,Liao Qifan.Case-Based Reasoning(CBR) for Land Use Classification Using Radar Images[J].Journal of Remote Sensing,2004,8(3):246-253.[黎夏,叶嘉安,廖其芳.利用案例推理(CBR)方法对雷达图像进行土地利用分类[J].遥感学报,2004,8(3):246-253.]

[15]Du Yunyan,Wang Lijing,Ji Min,et al.A CBR Approach for Land Use Change Prediction[J].Acta Geographica Sinica,2009,64(12):1421-1429.[杜云艳,王丽敬,季民,等.土地利用变化预测的案例推理方法[J].地理学报,2009,64(12):1421-1429.]

[16]Huang Huiping,Scale Issue in Object-oriented Image Analysis[D].Beijing:Chinese Academy of Sciences(Institute of Remote Sensing Applications),2003.[黄慧萍.面向对象影像分析中的尺度问题研究[D].北京:中国科学院遥感应用研究所,2003.]

[17]〖KG*8/9〗〖KG(0.12mm〗eCognition User Guide.Definiens Imaging GmbH,Munich〖KG)〗[EB/OL].http://www.Definiensimaging.com/product.html.2008,2002.

[18]Tan P N,Steinbach M,Kumar V.Introduction to Data Mining[M].Boston:Addison Wesley,2006.

[1] 王宁,陈方,于博. 基于形态学开运算的面向对象滑坡提取方法研究[J]. 遥感技术与应用, 2018, 33(3): 520-529.
[2] 何艺,周小成,黄洪宇,许雪琴. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018, 33(1): 168-176.
[3] 李玉琴,苏程,王习之,黄智才,章孝灿. 菲律宾吕宋岛斑岩铜金矿遥感找矿模型[J]. 遥感技术与应用, 2017, 32(6): 1151-1160.
[4] 王守志,邢立新,仲波,杨爱霞,张福坤,梁敏. 基于Landsat-8 OLI和GF-1 PMS数据融合的铁染蚀变信息提取[J]. 遥感技术与应用, 2016, 31(5): 950-957.
[5] 费鲜芸,王婷,魏雪丽. 基于多尺度分割的遥感影像滨海湿地分类[J]. 遥感技术与应用, 2015, 30(2): 298-303.
[6] 宋晓阳,姜小三,江东,黄耀欢,万华伟,王昌佐. 基于面向对象的高分影像分类研究[J]. 遥感技术与应用, 2015, 30(1): 99-105.
[7] 徐万朋,陈向宁,郗丽娜,徐春宇. 基于全变差的Bandelet变换域SAR图像相干斑抑制方法[J]. 遥感技术与应用, 2014, 29(3): 517-522.
[8] 韩晓静,邢立新,潘军,周彩彩,于一凡,董连英. 地形对蚀变信息光谱影响研究与应用[J]. 遥感技术与应用, 2014, 29(1): 88-93.
[9] 王少伟,张晓祥,杨晓英. 太湖湖滨敏感区的土地利用遥感分类研究[J]. 遥感技术与应用, 2014, 29(1): 114-121.
[10] 陈劲松. 基于ETM+影像的矿化蚀变区植被信息提取研究[J]. 遥感技术与应用, 2013, 28(6): 1083-1087.
[11] 刘磊,周军,尹芳,冯敏. 基于ASTER数据的巴里坤地区蚀变矿物填图及找矿[J]. 遥感技术与应用, 2013, 28(4): 556-561.
[12] 罗一英,高光明,于信芳,秦瑞. 基于ETM+的几内亚铝土矿蚀变信息提取方法研究[J]. 遥感技术与应用, 2013, 28(2): 330-337.
[13] 刘友山,吕成文,祝凤霞,高 超. 基于PCA和多尺度纹理特征提取的高分辨率遥感影像分类[J]. 遥感技术与应用, 2012, 27(5): 706-711.
[14] 朱超洪,刘 勇. 基于影像认知和地学理解的面向对象分类研究[J]. 遥感技术与应用, 2012, 27(4): 536-541.
[15] 李维良,高 伟,叶三星. 基于多核计算机的遥感影像多尺度分割[J]. 遥感技术与应用, 2012, 27(4): 560-565.