Please wait a minute...
img

官方微信

遥感技术与应用  2012, Vol. 27 Issue (6): 865-872    DOI: 10.11873/j.issn.1004-0323.2012.6.865
图像与数据处理     
基于生态地理分区的5套土地利用覆盖数据的不确定性研究
王洁1,2,张增祥1,张委伟1,2
(1.中国科学院遥感应用研究所,北京 100101;2.中国科学院大学,北京 100049)
Study on the Uncertainty of Five Land Use/Land Cover Data Sets based on Eco-graphical Regions
Wang Jie1,2 ,Zhang Zengxiang1,Zhang Weiwei1,2
(1.Institute of Remote Sensing Applications Chinese Academy of Sciences,Beijing 100101,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(3184 KB)  
摘要:

基于生态地理分区从面积精度和位置精度两个方面定量探讨了5套全球土地利用/覆盖(LULC)数据产品在实际应用中的不确定性,为基于生态地理分区的相关研究选择合理数据集提供参考依据,同时为中国生产全球LULC产品提供有关信息。选择中国地区20个典型生态地理分区为研究对象,采用最小误差频率法,分析5套数据集对各个类型面积估计的不确定性大小及原因;采用混淆矩阵法,基于位置分析5套数据集在类型混分方面的不确定性大小,原因及空间分布规律。结果表明:在生态地理分区尺度,MODIS,Meris300以及Glc2000这3套数据集明显优于Umd和Usgs这两套数据集,并且随着生态地理分区自南向北\,自东向西的空间分布,这3套数据集的不确定性呈减小趋势。对所有生态地理分区而言,Meris300数据集整体估计的稳定性最高,但是估计精度不是最高,并且它对建设用地和水域的估计最有优势。MODIS数据集整体估计精度和稳定性次之,对耕地的估计最有优势。 Glc2000数据集更适用于土地利用/覆盖简单的生态地理分区。研究还发现地形和土地利用/覆盖的复杂程度是引起数据集不确定性的两个重要因素。

关键词: 生态地理分区土地覆盖与利用遥感数据不确定性    
Abstract:

Based on eco-geographical regions,this paper,from two aspects of area accuracy and position accuracy,quantitatively studied the uncertainty of five global Land Use and Land Cover(LULC)data sets in practical application.The conclusions of this paper can be employed in choosing reasonable data sets efficiently for other relative researches about eco-geographical regions.In addition,the results will also provide reference for Chinese researchers to make global LULC map.In this paper,twenty typical eco-geographical regions were chosen as research objects.On the one hand,in the estimations of thematic type area,the uncertainty degree and reasons of each data set were analyzed through counting the minimum error of each data set;On the other hand,error matrix was adopted to study the position uncertainty of each LULC type in five data sets,reasons and spatial distribution laws.The results indicated that,in eco-geographical regions scale,these three data sets of MODIS,Meris300 and Glc2000 were super to Umd and Usgs.And for the distribution of the eco-geographical regions from south to north,from east to west,the uncertainty of these three data sets would be decreased gradually Meanwhile,Meris300 data set estimated the area and position of each LULC type with the highest stability,while the accuracy was not the highest.It was good at the estimation of construction land and water.Both estimation stability and accuracy of MODIS data set were acceptable and it was used to estimate farmland with lowest error.Glc2000 data set was more suitable to be applied to study the eco-geographical regions with simple LULC type.

Key words: Eco-geographical region    Land use and land cover    Remote sensing data set    Uncertainty
收稿日期: 2011-11-04 出版日期: 2013-06-25
:  TP 79  
基金资助:

国家海洋局“渤海环境立体监测与动态评价专项”渤海环境遥感监测技术开发和业务化应用专题(BH2009RS)资助。

作者简介: 王洁(1986-),女,山西运城人,硕士研究生,主要从事土地利用/覆盖的相关研究。Email:wjnjdx@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王洁
张增祥
张委伟

引用本文:

王洁,张增祥,张委伟. 基于生态地理分区的5套土地利用覆盖数据的不确定性研究[J]. 遥感技术与应用, 2012, 27(6): 865-872.

Wang Jie,Zhang Zengxiang,Zhang Weiwei. Study on the Uncertainty of Five Land Use/Land Cover Data Sets based on Eco-graphical Regions. Remote Sensing Technology and Application, 2012, 27(6): 865-872.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2012.6.865        http://www.rsta.ac.cn/CN/Y2012/V27/I6/865

1]Yang Qinye,Wu Shaohong,Zheng Du.A Retrospect and Pr-ospect of Researches on Regional Physic Geographical System(RPGS)[J].Geographical Research,2002,21(4):407-416.[杨勤业,吴绍洪,郑度.自然地域系统研究的回顾与展望[J].地理研究,2002,21(4):407-416.]

[2]Cheng Yeqing,Zhang Pingyu.Progress on Eco-geographical Regionalization Researches[J].Acta Ecologica Sinica,2006,26(10):3424-3433.[程叶青,张平宇.生态地理区划研究进展[J].生态学报,2006,26(10):3424-3433.]

[3]Baily R G.Description of the Ecoregions of the United States[M].Florida:United States Department of Agriculture Forest Service,1980.

[4]Wu Shaohong,Yang Qinye,Zheng Du.An Index System for Boundaries of Eco-geographical Regions of China[J].Progress in Geography,2002,21(4):302-310.[吴绍洪,杨勤业,郑度.生态地理区域界线划分的指标体系[J].地理科学进展,2002,21(4):302-310.]

[5]Fu Bojie,Chen Liding,Liu Guohua.The Objectives,Tasks and Characteristics of China Ecological Regionalization[J].Acta Ecologica Sinica,1999,9(5):591-595.[傅伯杰,陈利顶,刘国华.中国生态区划的目的、任务及特点[J].生态学报,1999,9(5):591-595.]

[6]Zhang Lansheng,Fang Xiuqi,Ren Guoyu.Global Change[M].Beijing:Higher Education Press,2000.[张兰生,方修琦,任国玉.全球变化[M].北京:高等教育出版社,2000.]

[7]Yang Q Y,Zheng D,Wu S H.Ecogeographic Region Study in China[J].Progress in Natural Sciences,2002,(3):287-291.

[8]Hansen M C,Defries R S,Townshend J R G,et al .Globalland Cover Classification at 1 km Spatial Resolution Using a Classification Tree Approach[J].International Journal of Remote Sensing,2000,21(6/7):1331-1364.

[9]Loveland T R,Reed B,Brown J F,et al.Development of a Gl-obal Land Cover Characteristics Database and IGBP DISCover from 1 km AVHRR Data[J].International Journal of Remote Sensing,2000,21(6/7):1303-1330.

[10]Loveland T R,Belward A S.The IGBP-DIS Global 1 km Landcover Data Set,DISCover:First Results[J].International Journal of Remote Sensing,1997,18(15):3289-3295.

[11]Friedl M A,Mciver D K,Hodges J C F,et al.Global Land Cover Mapping from MODIS:Algorithms and Early Results[J].Remote Sensing of Environment,2002,83(1/2):287-302.

[12]Justice C O,Townshend J R G,Vermote E F,et al.An Overview of MODIS Land Data Processing and Product Status[J].Remote Sensing of Environment,2002,83(1/2):3-15.

[13]Bart Holome E,Belward A S.GLC2000 :A New Approach to Global Land Cover Mappings from Earth Observation Data[J].International Journal of Remote Sensing,2005,26(9):1959-1977.

[14]Defourny P,Vancutsem C,Bicheron P,et al.GLOBCOVER:A 300 m Global Land Cover Product for 2005 Using EnviSat MERIS Time Series[C]//Proceedings of International Society for Photogrammetry and Remote Sensing Commission VII Mid-Term Symposium:Remote Sensing:From Pixels to Processes,Enschede,Netherlands,2006.

[15]Lambin E F,Geist H.Land-use and Land-cover Change:Local Processes and Global Impacts[M].Berlin:Springer,2006.

[16]Hansen M C.Reed B.A Comparison of the IGBP DISCover and University of Maryland 1 km Global Land Cover Products[J].International Journal of Remote Sensing,2000,21(6):1365-1373.

[17]Chandra G,Zhiliang Z,Bradley R.A Comparative Analysis of the Global Land Cover 2000 and MODIS Land Cover Datasets[J].Remote Sensing of Environment,2005,94:123-132.

[18]Skinner D L,Luckman D A.Deriving Land Cover Information over Siberia Using MERIS and MODIS Data[C]//Proceedings of the MERIS User Workshop,Frascati,Italy,2004.

[19]Ran Youhua,Li Xin,Lu Ling.Accuracy Evaluation of the Four Remote Sensing based Land Cover Products over China[J].Journal of Glaciology and Geocryology,2009,31(3):490-500.[冉有华,李新,卢玲.四种常用的全球1 km 土地覆盖数据中国区域的精度评价[J].冰川冻土,2009,31(3):490-500.]

[20]Wu Wenbin,Yang Peng,Zhang Li,et al.Accuracy Assessment of Four Global Land Cover Datasets in China[J].Transactions of the CSAE,2009,25(12):167-173.[吴文斌,杨鹏,张莉,等.四类全球土地覆盖数据在中国区域的精度评价[J].农业工程学报,2009,25(12):167-173.]

[21]Xu Wenting,Wu Bingfang,Yan Changzhen,et al.China Land Cover 2000 Using SPOT-VGT S10 Data[J].Journal of Remote Sensing,2005,9(2):204-215.[徐文婷,吴炳方,颜长珍,等.用SPOT-VGT数据制作中国 2000年度土地覆盖数据[J].遥感学报,2005,9(2):204-215.]

[22]Wei Yaxing,Wang Liwen.Progress in Research on Land Cover Products of MODIS[J].Spectroscopy and Spectral Analysis,2010,30(7):1848-1852.[卫亚星,王莉雯.MODIS土地覆盖产品研究进展[J].光谱学与光谱分析,2010,30(7):1848-1852.]

[23]Li Aihua,Bo Yanchen.Comparison of Multi-Sources Remote Sensing Thematic Information:Progresses,Problems and Prospects[J].Advances in Earth Science,2011,26(7):741-750.[李爱华,柏延臣.多源遥感专题信息比较研究:现状、问题、与展望[J].地理科学与进展,2011,26(7):741-750.]

[24]Anderson J R,Hardy E E,Roach J T et al.A Land Use and Land Cover Classification System for Use with Remote Sensor Data[M].Washington:United States Government Printing Office,1976.

[25]Iierlihy A T,Stoddard J L,Johnson C B.The Relationship between Stream Chemistry and Watershed Land Cover Data in the Mid-Atlantic Region,US[J].Water,Air,and Soil Pollution,1998,105:377-386.

[26]Homer C,Huang C Q,Yang L M,et al.Development of a 2001 National Land Cover Database for the United States[J].Photogrammetric Engineering & Remote Sensing,2004,70(7):829-840.

[27]Olson D M,Dinerstein E.Terrestrial Ecoregions of the Wo-rld:A New Map of Life on Earth[J].Bioscience,2001,5(11):933-938.

[28]Huang Meiling,Jiang Hong,Zhu Qiuan,et al.Spatial and Te-mporal Variability Characteristics of Ultraviolet Radiation in Eco-regions of China from 1961 to 2000[J].Scientia Geographica Snica,2009,29(3):391-396.[黄梅玲,江洪,朱求安,等.1961-2000年中国生态区紫外辐射的时空演变特征[J].地理科学,2009,29(3):391-396.]

[29]Gregorio A D,Jansen L J M.Land Cover Classification System(LCCS):Classification Concepts and User Manual[M].Rome:Food and Agriculture Organization of the United Nations,1998.

[30]Liu J Y,Liu M L,Zhuang D F,et al.Study on Spatial Pattern of Land-use Change in China during 1995-2000[J].Science in China(Series D),2003,46(4):373-384.

[31]Zhang Zengxiang.Remote Sensing Monitoring of Land Cover in China[M].Beijing:Planetary  Maps Press,2010.[张增祥.中国土地覆盖遥感监测[M].北京:星球地图出版社,2010.]

[32]Li Chaofeng,Zeng Shenggen,Xu Lei.Intelligent Process of Remote Sensing Images[M].Beijng:Electronic Industry Press,2007.[李朝锋,曾生根,许磊.遥感图像智能处理[M].北京:电子工业出版社,2007.]

[33]Yang Yongxing.Main Characteristics,Progress and Prospect of International Wetland Science Research[J].Advance in Earth Sciences,2002,17(4):508-514.[杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域与展望[J].地球科学进展,2002,17(4):508-514.]

[34]Zhao Hui,Zhang Haiying,Li Nana.Progress and Prospect of China Wetland Remote Sensing Research[J].Geography and Geo-information Science,2010,26(2):62-66.[赵惠,张海英,李娜娜.中国湿地遥感研究现状与趋势评述[J].地理与地理信息科学,2010,26(2):62-66.]


 


 

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 赵洪臣,周兴华,刘永学,纪雪,杨磊,孙超,金松. GPM卫星微波辐射计SST产品观测覆盖度与不确定性分析研究[J]. 遥感技术与应用, 2017, 32(6): 1031-1039.
[3] 王一明,蒙继华,程志强. 关键物候期遥感数据缺失条件下的数据同化研究[J]. 遥感技术与应用, 2017, 32(4): 615-623.
[4] 唐超,邵龙义. 高光谱遥感地物目标识别算法及其在岩性特征提取中的应用[J]. 遥感技术与应用, 2017, 32(4): 691-697.
[5] 代晶晶,王瑞江,王登红. 高空间分辨率遥感数据在离子吸附型稀土矿山调查中的应用[J]. 遥感技术与应用, 2014, 29(6): 935-942.
[6] 赵军,付杰文,付鹏. 雪盖指数法提取积雪范围信息的不确定性研究—以玛纳斯上游地区为例[J]. 遥感技术与应用, 2014, 29(2): 293-299.
[7] 赵涌泉,单小军,唐娉. 低空间分辨率多源遥感数据的空间一致性分析和相对几何校正[J]. 遥感技术与应用, 2014, 29(1): 155-163.
[8] 赵小星,钱建平,覃顺桥,黄克宸,韩 帅. 云南江城大团包铜矿及外围高植被区遥感找矿预测[J]. 遥感技术与应用, 2013, 28(5): 879-889.
[9] 关磊,李华,苏倩,陈建业. 公路路域生态环境遥感监测数据源选取研究[J]. 遥感技术与应用, 2013, 28(2): 315-321.
[10] 马明国,宋 怡,王旭峰,韩辉邦,于文凭. AVHRR、VEGETATION和MODIS时间系列遥感数据产品现状与应用研究进展[J]. 遥感技术与应用, 2012, 27(5): 663-670.
[11] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2012, 27(1): 1-6.
[12] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2011, 27(1): 1-7.
[13] 苗立新, 李 霞, 周连芳, 文 强, 纪中奎, 熊志明, 靳光明, 胡 琳. 基于ENVI/IDL的多源遥感数据覆盖范围快速查询技术及实现[J]. 遥感技术与应用, 2010, 25(4): 502-509.
[14] 李福建 ,马安青 ,丁原东 ,杨俊杰,焦俊超,刘乐军 . 基于Landsat数据的城市热岛效应研究[J]. 遥感技术与应用, 2009, 24(4): 553-558.
[15] 丁凤. 一种基于遥感数据快速提取水体信息的新方法[J]. 遥感技术与应用, 2009, 24(2): 167-171.