Please wait a minute...
img

官方微信

遥感技术与应用  2013, Vol. 28 Issue (2): 290-299    DOI: 10.11873/j.issn.1004-0323.2013.2.290
遥感应用     
基于GIMMS、VGT和MODIS的中国东部植被指数对比分析
侯美亭1,赵海燕2,王筝3,延晓冬4,5
(1.中国气象局气象干部培训学院,北京 100081;2.山西省气候中心,山西 太原 030006;
3.中国科学院空间应用工程与技术中心,北京 100094;
4.中国科学院大气物理研究所东亚区域气候—环境重点实验室,北京 100029;
5.北京师范大学,北京 100875)
Comparison of GIMMS,VGT and MODIS Vegetation Index Datasets in Eastern China
Hou Meiting1,Zhao Haiyan2,Wang Zheng3,Yan Xiaodong4,5
(1.China Meteorological Administration Training Centre,Beijing 100081,China;
2.Shanxi Climate Center,Taiyuan 030006,China;3.Technology and Engineering Center for
Space Utilization,Chinese Academy of Sciences,Beijing 100094,China;4.Key Laboratory of Regional
Climate-Environment Research for Temperate East Asia,Institute of Atmospheric Physics,Chinese
Academy of Sciences,Beijing 100029,China;5.Beijing Normal University,Beijing 100875,China)
 全文: PDF(1462 KB)  
摘要:

GIMMS NDVI、VGT NDVI和MODIS NDVI/EVI是目前在植被变化有关研究中经常使用的植被遥感数据,它们之间的差异也得到了广泛关注。然而,在分析这些数据之间的差异时,较少有研究注意到植被本身固有的季节循环可能夸大了各数据间的相关关系。应用2000~2006年GIMMS NDVI、VGT NDVI、MODIS NDVI/EVI等不同植被遥感数据,对比了基于这些数据集的中国东部植被年际变化的差异,探讨了植被季节循环对不同遥感数据之间相关性的影响。结果表明:由不同遥感数据提取的植被年际变化特征具有明显的一致性,然而,植被本身固有的季节循环特征掩盖了不同数据集的差异。季节循环去除前,各数据集之间具有显著的相关性;季节循环去除后,各数据集的相关性明显降低,但不同数据集在北部区域依然具有较好的一致性,其差异主要出现在南部区域,差异最明显的是GIMMS与MODIS数据,二者在淮河以南的区域几乎不存在显著相关。

关键词: 植被指数年际变化季节循环相关    
Abstract:

Remote sensing data sets from GIMMS NDVI,VGT NDVI and MODIS NDVI/EVI have been widely used in the studies related to vegetation change.Many previous studies have evaluated the consistency among these different data sets.However,less attention has been paid to study of the influence of seasonal cycle of vegetation,which probably amplifies the relationships among different data sets.Interannual variability of vegetation and the influence of the seasonality of vegetation on the consistency of different remotely sensed datasets had been investigated using GIMMS NDVI,VGT NDVI and MODIS NDVI/EVI products in eastern China from the period 2000 to 2006.The results indicate that all of these datasets show similar trends of the interannual variability of vegetation,whereas,the seasonality of the vegetation data overshadows the difference of different remote sensing data sources.The vegetation indices derived from GIMMS,VGT and MODIS show significant correlation before removing the seasonality,while the relationships among them decrease obviously after removing the seasonality.In general,the consistency of GIMMS,VGT and MODIS still remains in the northern part of eastern China.The differences among them mainly occur in the southern part.In particular,the most rapid decrease of correlation occurs between GIMMS and MODIS.The correlation between them has not been observed in large parts of the region located south of the Huai River.

Key words: Vegetation index    Interannual variability    Seasonality    Correlation
收稿日期: 2012-01-09 出版日期: 2013-06-24
:  TP 79  
基金资助:

国家自然科学基金项目(41201044),国家973计划项目(2010CB950903)。

通讯作者: 延晓冬(1962-),男,陕西绥德人,研究员,主要从事全球变化和生态系统动态模拟研究。Email:yxd@bnu.edu.cn。    
作者简介: 侯美亭(1982-),男,河南清丰人,博士,工程师,主要从事环境遥感和全球变化研究。Email:hmt567@gmail.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
侯美亭
赵海燕
王筝
延晓冬

引用本文:

侯美亭,赵海燕,王筝,延晓冬. 基于GIMMS、VGT和MODIS的中国东部植被指数对比分析[J]. 遥感技术与应用, 2013, 28(2): 290-299.

Hou Meiting,Zhao Haiyan,Wang Zheng,Yan Xiaodong. Comparison of GIMMS,VGT and MODIS Vegetation Index Datasets in Eastern China. Remote Sensing Technology and Application, 2013, 28(2): 290-299.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2013.2.290        http://www.rsta.ac.cn/CN/Y2013/V28/I2/290

[1]Julien Y,Sobrino J A.The Yearly Land Cover Dynamics (YLCD) Method:An Analysis of Global Vegetation from NDVI and LST Parameters[J].Remote Sensing of Environment,2009,113(2):329-334.

[2]Steven M D,Malthus T J,Baret F,et al.Intercalibration of Vegetation Indices from Different Sensor Systems[J].Remote Sensing of Environment,2003,88(4):412-422.

[3]Fensholt R,Rasmussen K,Nielsen T T,et al.Evaluation of Earth Observation based Long Term Vegetation Trends-Intercomparing NDVI Time Series Trend Analysis Consistency of Sahel from AVHRR GIMMS,Terra MODIS and SPOT VGT Data[J].Remote Sensing of Environment,2009,113(9):1886-1898.

[4]Huete A,Didan K,Miura T,et al.Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices[J].Remote Sensing of Environment,2002,83(1-2):195-213.

[5]Justice C,Belward A S,Morisette J,et al.Developments in the “Validation” of Satellite Sensor Products for the Study of the Land Surface[J].International Journal of Remote Sensing,2000,21(17):3383-3390.

[6]Maisongrande P,Duchemin B,Dedieu G.Vegetation/SPOT:An Operational Mission for the Earth Monitoring:Presentation of New Standard Products[J].International Journal of Remote Sensing,2004,25(1):9-14.

[7]Tarnavsky E,Garrigues S,Brown M E.Multiscale Geostatistical Analysis of AVHRR,SPOT-VGT,and MODIS Global NDVI Products[J].Remote Sensing of Environment,2008,112(2):535-549.

[8]Wen Gang,Fu Congbin.Large Scale Features of the Seasonal Phenological Responses to the Monsoon Climate in East China:Multi-year Average Results[J].Chinese Journal of Atmospheric Sciences,2000,24(5):676-682.[温刚,符淙斌.中国东部季风区植被物候季节变化对气候响应的大尺度特征:多年平均结果[J].大气科学,2000,24(5):676-682.]

[9]Piao S L,Fang J Y,Zhou L M,et al.Interannual Variations of Monthly and Seasonal Normalized Difference Vegetation Index (NDVI) in China from 1982 to 1999[J].Journal of Geophysical Research,2003,108(D14),4401.Doi:10.1029/2002JD002848.

[10]Xia Lu,Liu Yongmei,Ke Changqing.Study on the Dynamic Changes of Vegetation in the Loess Plateau based on Data from SPOT4[J].Remote Sensing Technology and Application,2008,23(1):67-71.[夏露,刘咏梅,柯长青.基于SPOT4数据的黄土高原植被动态变化研究[J].遥感技术与应用,2008,23(1):67-71.]

[11]Cui Linli,Shi Jun,Yang Yinming,et al.Ten-day Response of Vegetation NDVI to the Variations of Temperature and Precipitation in Eastern China[J].Acta Geographica Sinica,2009,64(7):850-860.[崔林丽,史军,杨引明,等.中国东部植被NDVI对气温和降水的旬响应特征[J].地理学报,2009,64(7):850-860.]

[12]Yan Xiaoyu,Dong Wenjie,He Yong.Analysis of the Suitability from Different Remote Sensing Data on the Monitoring of Vegetation Change in Ruoergai Marsh[J].Remote Sensing Technology and Application,2008,23(3):300-304.[严晓瑜,董文杰,何勇.不同传感器数据在若尔盖湿地植被变化监测应用中的适宜性分析[J].遥感技术与应用,2008,23(3):300-304.]

[13]Song Y,Ma M G,Frank V.Comparison and Conversion of AVHRR GIMMS and SPOT VEGETATION NDVI Data in China[J].International Journal of Remote Sensing,2010,31(9):2377-2392.

[14]Chen Yanli,Long Buju,Pan Xuebiao,et al.Differences between MODIS NDVI and AVHRR NDVI in Monitoring Grasslands Change[J].Journal of Remote Sensing,2011,15(4):831-845.[陈燕丽,龙步菊,潘学标,等.MODIS NDVI和AVHRR NDVI对草原植被变化监测差异[J].遥感学报,2011,15(4):831-845.]

[15]Chatfield C.The Analysis of Time Series:An Introduction[M].Boca Raton,FL:CRC Press,2004.

[16]Ma M,Frank V.Interannual Variability of Vegetation Cover in the Chinese Heihe River Basin and Its Relation to Meteorological Parameters[J].International Journal of Remote Sensing,2006,27(16):3473-3486.

[17]Tan P N,Steinbach M,Kumar V,et al.Finding Spatio-termporal Patterns in Earth Science Data[C]//KDD Temporal Data Mining Workshop,San Francisco,California,USA,2001.

[18]Pennington D D,Collins S L.Response of an Arid Land Ecosystem to Interannual Climate Variability and Prolonged Drought[J].Landscape Ecology,2007,22(6):897-910.

[19]Anderson L O,Malhi Y,Arag o L E O C,et al.Remote Sensing Detection of Droughts in Amazonian Forest Canopies[J].New Phytologist,2010,187(3):733-750.

[20]Fensholt R,Rasmussen K.Analysis of Trends in the Sahelian “Rain-use Efficiency” Using GIMMS NDVI,RFE and GPCP Rainfall Data[J].Remote Sensing of Environment,2011,115(2):438-451.

[21]Weiss E,Marsh S E,Pfirman E S.Application of NOAA-AVHRR NDVI Time-series Data to Assess Changes in Saudi Arabia’s Rangelands[J].International Journal of Remote Sensing,2001,22(6):1005-1027.

[22]Brown M E,Pinzon J E,Didan K,et al.Evaluation of the Consistency of Long-term NDVI Time Series Derived from AVHRR,SPOT-Vegetation,SeaWiFS,MODIS and LandSAT ETM+ Sensors[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(7):1787-1793.

[23]Liu J,Tian H,Liu M,et al.China’s Changing Landscape during the 1990s:Large-scale Land Transformations Estimated with Satellite Data[J].Geophysical Research Letters,2005,32:L02405.Doi:10.1029/2004GL021649.

[24]Acker J G,Leptoukh G.Online Analysis Enhances Use of NASA Earth Science Data[N].Eos,Transactions,American Geophysical Union,2007,88(2):14.Doi:10.1029/2007EO 020003.

[25]Song Fuqiang,Kang Muyi,Yang Peng,et al.Comparison and Validation of GIMMS,SPOT-VGT and MODIS Global NDVI Products in the Loess Plateau of Northern Shaanxi Province,Northwestern China[J].Journal of Beijing Forestry University,2010,32(4):72-80.[宋富强,康慕谊,杨朋,等.陕北地区GIMMS、SPOT-VGT和MODIS归一化植被指数的差异分析[J].北京林业大学学报,2010,32(4):72-80.]

[26]Pettorelli N,Vik J O,Mysterud A,et al.Using the Satellite-derived NDVI to Assess Ecolsssogical Responses to Environmental Change[J].Trends in Ecology and Evolution,2005,20(9):503-510.

[1] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[2] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[3] 包永康,周艳莲,单良. 叶绿素指数与最大羧化速率相关性研究[J]. 遥感技术与应用, 2018, 33(2): 267-274.
[4] 杨朦朦,汪汇兵,欧阳斯达,范奎奎,戚凯丽. 基于双树复小波分解的BP神经网络遥感影像分类[J]. 遥感技术与应用, 2018, 33(2): 313-320.
[5] 谢京凯,王福民,王飞龙,张东尼. 面向水稻LAI监测的植被指数土壤调节参数修正[J]. 遥感技术与应用, 2018, 33(2): 342-350.
[6] 曾毓燕,施润和,刘浦东,王弘. 利用植被指数估算叶绿素含量的模型模拟研究—以PROSPECT+DART模型为例[J]. 遥感技术与应用, 2017, 32(4): 667-673.
[7] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[8] 张泰然,韦玉春. 线性约束与局部对比相耦合的多光谱遥感图像中目标探测[J]. 遥感技术与应用, 2016, 31(6): 1114-1121.
[9] 吴志杰,何国金,王猛猛,傅娇凤,邹丹. 南方丘陵区植被覆盖度遥感估算与时空变化研究—以福建省永定县为例[J]. 遥感技术与应用, 2016, 31(6): 1201-1208.
[10] 沙敏敏,张风丽,符喜优,王国军,邵芸. 基于SAR数据的城市空气动力学粗糙度研究[J]. 遥感技术与应用, 2016, 31(5): 855-863.
[11] 张婕,张文煜,冯建东,王宏义,于泽,宋玮. 基于亮温—植被指数—气溶胶光学厚度的MODIS火点监测算法研究[J]. 遥感技术与应用, 2016, 31(5): 886-892.
[12] 沙莎,胡蝶,王丽娟,郭铌,李巧珍. 基于Landsat8OLI数据的黄土高原植被含水量的估算模型研究[J]. 遥感技术与应用, 2016, 31(3): 558-563.
[13] 韩培,舒红,许剑辉. 基于DEnKF的背景误差协方差局地化和协方差膨胀研究[J]. 遥感技术与应用, 2016, 31(2): 221-229.
[14] 杨超,王金亮,李石华,王丽霞,马骊驰,潘继亚,高帆,刘广杰. 抚仙湖流域土地退化动态遥感监测研究[J]. 遥感技术与应用, 2016, 31(2): 388-396.
[15] 张正健,李爱农,边金虎,赵伟,南希,靳华安,谭剑波. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62.