Please wait a minute...
img

官方微信

遥感技术与应用  2013, Vol. 28 Issue (3): 520-525    DOI: 10.11873/j.issn.1004-0323.2013.3.520
遥感应用     
甘肃北山辉铜山地区镁铁岩体遥感识别方法研究
刘磊1,2,周军1,2,冯敏3,李昱星1,牛涛1
(1.长安大学地球科学与资源学院,陕西 西安 710054;
2.兰州金石开矿产咨询服务有限责任公司,甘肃 兰州 730030;
3.中国科学院地理科学与资源研究所,北京 100101)
Lithological Discrimination of the Mafic Rocks,Huitongshan,Beishan,Gansu,Using Remote Sensing Data
Liu Lei1,2,Zhou Jun1,2,Feng Min3,Li Yuxing1,Niu Tao1
(1.School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China;
2.Lanzhou AuriferouStone Mining Services Co.,Ltd,Lanzhou 730030,China;
3.Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences,Beijing 100101,China)
 全文: PDF(4635 KB)  
摘要:

ASTER(先进星载热发射和反射辐射仪)已被广泛应用于岩性识别研究中,但在国内综合采用多种方法增强并识别镁铁—超镁铁岩体信息的研究较少。以甘肃北山辉铜山地区为研究区,综合应用比值法、最小噪声分离和镁铁岩指数等方法处理研究区ASTER数据,以突出辉铜山地区镁铁—超镁铁岩信息。将处理结果与地质图对比、综合分析,圈定了11处疑似辉长岩体,对其中9处进行野外验证,全部与遥感分析结果吻合,证明了结果的有效性。该方法可以应用于西部地区镁铁—超镁铁岩体识别工作中。

关键词: 镁铁&mdash超镁铁岩遥感比值镁铁岩指数最小噪声分离    
Abstract:

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) has been used extensively in lithological discrimination.However,using multi-methods to enhance and identify the mafic-ultramafic rocks have rarely been reported in China.This study took Huitongshan in Beishan area,Gansu as the study area.Multi-methods such as band ratio,minimum noise fraction and mafic index were adopted to enhance and identify the mafic-ultramafic rocks using ASTER data.The study results were compared with the geological map,and conformed to be consistent with the geological map of the study area.Eleven new gabbro prospects were identified at the first time by synthetic analyses of remote sensing results and geological data.Through ground inspections of nine prospects,all the nine sites were consistent with the prospects and nine new gabbro occurrences were discovered.The result shows that using remote sensing data and multi-image processing methods are effective to map mafic-ultramafic occurrences and can be used in the remote inaccessible region.
 

Key words: Mafic-ultramafic complex    Remote sensing    Band ratio    Mafic index    Minimum noise fraction
收稿日期: 2012-05-11 出版日期: 2013-07-05
:  TP 79  
基金资助:

中央高校基本科研业务费专项资金,长安大学西部矿产资源与地质工程教育部重点实验室开放基金(CHD2011SY013)。

作者简介: 刘磊(1982-),男,黑龙江克东人,博士,讲师,主要从事遥感技术地质应用研究。Email:liul@chd.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘磊
周军
冯敏
李昱星
牛涛

引用本文:

刘磊,周军,冯敏,李昱星,牛涛. 甘肃北山辉铜山地区镁铁岩体遥感识别方法研究[J]. 遥感技术与应用, 2013, 28(3): 520-525.

Liu Lei,Zhou Jun,Feng Min,Li Yuxing,Niu Tao. Lithological Discrimination of the Mafic Rocks,Huitongshan,Beishan,Gansu,Using Remote Sensing Data. Remote Sensing Technology and Application, 2013, 28(3): 520-525.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2013.3.520        http://www.rsta.ac.cn/CN/Y2013/V28/I3/520

[1]Abrams M J,Rothery D A,Pontual A.Mapping in the Oman Ophiolite Using Enhanced Landsat Thematic Mapper Images[J].Tectonophysics,1988,151(1-4):387-401.[2]Ninomiya Y,Fu B H,Cudahy T J.Detecting Lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Multispectral Thermal Infrared “Radiance-At-Sensor” Data[J].Remote Sensing of Environment,2005,99(1/2):127-139.

[3]Rowan L C,Mars J C,Simpson C J.Lithologic Mapping of the Mordor,NT,Australia Ultramafic Complex by Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J].Remote Sensing of Environment,2005,99(1/2):105-126.

[4]Fu B H,Zheng G D,Ninomiya Y,et al.Mapping Hydrocarbon-induced Mineralogical Alteration in the Northern Tian Shan Using ASTER Multispectral Data[J].Terra Nova,2007,19(4):225-231.

[5]Amer R,Kusky T,Ghulam A.Lithological Mapping in the Central Eastern Desert of Egypt Using ASTER Data[J].Journal of African Earth Sciences,2010,56(2/3):75-82.

[6]Nair A,Mathew G.Lithological Discrimination of the Phen-aimata Felsic-Mafic Complex,Gujarat,India,Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J].International Journal of Remote Sensing,2012,33(1):198-219.

[7]Hunt G R.Spectral Signatures of Particulate Minerals in the Visible and Near Infrared[J].Geophysics,1977,42(3):501-513.

[8]Yamaguchi Y,Kahle A B,Kawakami T,et al.Overview of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J].IEEE Transaction on Geoscience and Remote Sensing,1998,36(4):1062-1071.

[9]Zhang X,Pazner M,Duke N.Lithological and Mineral Information Extraction for Gold Exploration Using ASTER Data in the South Chocolate Mountains,California[J].ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(4):271-282.

[10]Dai Jingjing.Remote Sensing Model for Magma Tic Liquation Irom Deposit Prediction in Western Ethiopia[J].Remote Sensig Technology and Application,2012,27(3):380-386.[代晶晶.埃塞俄比亚西部岩浆熔离型铁矿遥感找矿模型[J].遥感技术与应用,2012,27(3):380-386.]

[11]Chen Jiang,Wang Anjian.The Pilot Study on Petrochemistry Components Mapping with ASTER Thermal Infrared Remote Sensing Data[J].Journal of Remote Sensing,2007,11(4):601-608.[陈江,王安建.利用ASTER热红外遥感数据开展岩石化学成分填图的初步研究[J].遥感学报,2007,11(4):601-608.]

[12]Yang Changbao,Zhu Qun,Jiang Qigang,et al.Silicon Dioxide Content of Surface Rock Quantify Inversion and Retrieval by Thermal Infrared ASTER Data[J].Geology and Exploration,2009,45(6):692-696.[杨长保,朱群,姜琦刚,等.ASTER热红外遥感地表岩石的二氧化硅含量定量反演[J].地质与勘探,2009,45(6):692-696.]

[13]Yang Jianguo,Wang Lei,Wang Xiaohong,et al.Zircon SHR-IMP U-Pb Dating of Heishan Mafic-Ultramafic Complex in the Beishan Area of Gansu Province and Its Geological Significance[J].Geological Bulletin of China,2012,31(2/3):448-454.[杨建国,王磊,王小红,等.甘肃北山地区黑山铜镍矿化镁铁-超镁铁杂岩体SHRIMP锆石U-Pb定年及其地质意义[J].地质通报,2012,31(2/3):448-454.]

[14]Yang Hequn,Li Ying,Yang Jianguo,et al.Main Metallogenic Characteristics in the Beishan Orogen[J].Northwestern Geology,2006,39(2):78-95.[杨合群,李英,杨建国.北山造山带的基本成矿特征[J].西北地质,2006,39(2):78-95.]

[15]Gansu Bureau of Geology and Mineral Resources.Geological Survey Report and Map of Hongliuyuan Region (1∶200 000)[R].Internal Report,1967.[甘肃省地质矿产局.1∶20万红柳园幅地质调查报告[R].内部报告,1967.]

[16]Gansu Bureau of Geology and Mineral Resources.Geological and Mineral Survey Report of Huitongshan Region (1∶50 000)[R].Internal Report,1985.[甘肃省地质矿产局.1∶5万辉铜山矿幅地质矿产调查报告[R].内部报告,1985.]

[17]Kaufman Y J,Wald A E,Remer L A,et al.The MODIS 2.1-μm Channel-Correlation with Visible Reflectance for Use in Remote Sensing of Aerosol[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1286-1298.

[18]Green A A,Berman M,Switzer P,et al.A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal[J].IEEE Transactions on Geosciences and Remote Sensing,1988,26(1):65-74.

[19]Du Bo,Zhang Liangpei,Li Pingxiang,et al.A Constrained Energy Minimization Method in Sub-pixel Target Detection based on Minimization Noise Fraction[J].Journal of Image and Graphics,2009,9(14):1850-1857.[杜博,张良培,李平湘,等.基于最小噪声分离的约束能量最小化亚像元目标检测方法[J].中国图象图形学报,2009,9(14):1850-1857.]

[20]Khan S D,Mahmood K,Casey J F.Mapping of Muslim Bagh Ophiolite Complex (Pakistan) Using New Remote Sensing and Field Data[J].Journal of Asian Earth Sciences,2007,30(2):333-343.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.