Please wait a minute...
img

官方微信

遥感技术与应用  2013, Vol. 28 Issue (4): 689-696    DOI: 10.11873/j.issn.1004-0323.2013.4.689
模型与反演     
基于多时相遥感数据的徐州市植被净初级生产力估算及相关性分析
李二珠1,谭琨1,杜培军2,蒋东娥3
(1.中国矿业大学江苏省资源环境信息工程重点实验室,江苏 徐州 221116;
2.南京大学地理信息科学系,江苏 南京 210093;
3.水利部河北省水利水电勘测设计研究院,河北 石家庄 050031)
Net Primary Productivity of Vegetation Estimation and Correlation Analysis based on Multi-Temporal Remote Sensing Data in Xuzhou
Li Erzhu1,Tan Kun1,Du Peijun2,Jiang Dong e3
(1.Jiangsu Key Laboratory of Resources and Environment Information Engineering
(China University of Mining and Technology),Xuzhou 221116,China;
2.Department of Geographical Information Science,Nanjing University,Nanjing 210093,China;
3.Hebei Research Institute of Investigation and Design of Water Conservancy
and Hydropower,Shijiazhuang 050031,China)
 全文: PDF(1922 KB)  
摘要:

以遥感数据和气象数据为主要数据源,应用改进的光能利用率模型估算徐州市2006、2008和2010年3年间6月份的植被净初级生产力(Net Primary Productivity,NPP),研究了该区域6月份NPP的时空变化及其与气象因子的相关性。结果表明:时间上,受气候和环境等因素综合变化的影响,研究区域6月份NPP呈逐年下降趋势;空间上,NPP的分布表现为在林地、草地和农田相对集中的区域偏高,且不同植被类型6月份的NPP大小关系在不同年份可能不同,其中在2006和2008年为农田>草地>林地,而2010年为农田>林地>草地。通过分析与气象因子的相关性和偏相关性,限制NPP的主要气象因子不是固定不变的,其中2006和2008年,限制NPP的主要气象因子为太阳辐射,而2010年为降雨量和温度。不同植被类型下NPP与气象因子相关性和偏相关性差异反映了不同类型植被生长对光、热、水条件要求的差异。

关键词: 遥感植被净初级生产力光能利用率模型    
Abstract:

An improved Carnegie Ames Stanford Approach model due to remote sensing data and climate variables were used to estimate the Net Primary Productivity (NPP) of Xuzhou in the June of 2006,2008,2010.The results of analysis variations and the relationship with climatic factors were as the follow:The mean NPP of terrestrial vegetation in Xuzhou showed decreasing trend in recent years because of the changes in climate and environment;The NPP values were higher in most of places where woodland,lawn and farmland were aggregation,the variations of NPP might be significant in different vegetation types,the NPP of farmland was more than lawn and woodland in 2006 and 2008,and the NPP of farmland was more than farmland and lawn in 2010.Based on the analysis of the correlation and partial correlation between NPP and climatic factors (temperature,precipitation and sunshine duration),it could be concluded that the influences of climate were complicated with NPP,and the dominant factor was not constant in this area.Because water and heat was in a good condition for vegetation growth in 2006 and 2008,the relationship between sunshine duration and NPP was more stronger;The temperature and precipitation became the limiting factors in 2010 because of lower in themselves and longer in sunshine duration.The different requirements of the different vegetation types in light,heat and water could be reflected by the variations of correlation and partial correlation between NPP and climatic factors in different vegetation types.

Key words: Remote sensing    NPP    Improved carnegie ames stanford approach model
收稿日期: 2012-11-14 出版日期: 2013-08-14
:  TP 79  
基金资助:

国家自然科学基金(41101423),中央高校基本科研业务费专项资金(2010QNA18),国土环境与灾害监测国家测绘局重点实验室开放基金资助项目(LEDM2010B03,LEDM2011B05),江苏省煤基CO2捕集与地质储存重点实验室基金(2011KF06)。

通讯作者: 谭琨(1981-),男,湖南祁东人,副教授,主要从事高光谱遥感图像处理、支持向量机和遥感应用等方面的研究。E-mail:tankun@cumt.edu.cn。   
作者简介: 李二珠(1988-),男,山西吕梁人,硕士研究生,主要从事遥感应用、遥感图像处理研究。E-mail:lierzhu2008@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李二珠
谭琨
杜培军
蒋东娥

引用本文:

李二珠,谭琨,杜培军,蒋东娥. 基于多时相遥感数据的徐州市植被净初级生产力估算及相关性分析[J]. 遥感技术与应用, 2013, 28(4): 689-696.

Li Erzhu,Tan Kun,Du Peijun,Jiang Dong e. Net Primary Productivity of Vegetation Estimation and Correlation Analysis based on Multi-Temporal Remote Sensing Data in Xuzhou. Remote Sensing Technology and Application, 2013, 28(4): 689-696.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2013.4.689        http://www.rsta.ac.cn/CN/Y2013/V28/I4/689

[1]Liu J,Chen J M,Chen W,et al.Net Primary Productivity Distribution in the BOREAS Region from a Process Model Using Satellite and Surface Data[J].Journal of Geophysical Research,1999,104(D22):27735-27754.

[2]Sun Rui,Zhu Qijiang.Net Primary Productivity of Terrestrial Vegetation-A Review on Related Researches[J].Chinese Journal of Applied Ecology,1999,10(6):757-760.[孙睿,朱启疆.陆地植被净第一性生产力的研究[J].应用生态学报,1999,10(6):757-760.]

[3]Fang Jingyun.Global Ecology[M].Beijing:Higher Education Press,2000.[方精云.全球生态学[M].北京:高等教育出版社,2000.]

[4]Huang F,Qi X,Xu S L.Monitoring NPP Change in Changbai Mountain Area,China with MODIS Images[C]//Geoinformatics,2011 19th International Conference on,Shanghai,2011.

[5]Zou Defu,Feng Qisheng,Liang Tiangang.Research on Grassland Classification and NPP in Gannan Region[J].Remote Sensing Technology and Application,2011,26(5):577-583.[邹德富,冯琦胜,梁天刚.甘南地区植被类型及其NPP研究[J].遥感技术与应用,2011,26(5):577-583.]

[6]Chen Lijun,Liu Gaohuan,Li Huiguo.Estimating Net Primary Productivity of Terrestrial Vegetation in China Using Remote Sensing[J].Journal of Remote Sensing,2002,6(2):129-136.[陈利军,刘高焕,励惠国.中国植被净第一性生产力遥感动态监测[J].遥感学报,2002,6(2):129-136.]

[7]Zhao Junfang,Yan Xiaodong,Zhu Yujie.Advance in Research on Net Primary Productivity of Terrestrial Vegetation[J].Journal of Desert Research,2007,27(5):780-786.[赵俊芳,延晓冬,朱玉洁.陆地植被净初级生产力研究进展[J].中国沙漠,2007,27(5):780-786.]

[8]Guo Q,Hu Z M,Li S G,et al.Spatial Variations in Ab-oveground Net Primary Productivity along a Climate Gradient in Eurasian Temperate Grassland:Effects of Mean Annual Precipitation and Its Seasonal Distribution[J].Global Change Biology,2012,18(12):3624-3631.

[9]Gao Q Z,Wan Y F,Li Y,et al.Effects of Topography and Human Activity on the Net Primary Productivity (NPP) of Alpine Grassland in Northern Tibet from 1981 to 2004[J].International Journal of Remote Sensing,2013,34(6):2057-2069.

[10]Singh R P,Rovshan S,Goroshi S K,et al.Spatial and Temporal Variability of Net Primary Productivity (NPP) Over Terrestrial Biosphere of India Using NOAA-AVHRR based GloPEM Model[J].Journal of the India Society of Remote Sensing,2011,39(3):345-353.

[11]Wen Jiashi.Effects of Urbanization on Carbon Storage and Sequestration in the Built-up Area[D].Hangzhou:Zhejiang University,2010.[温家石.城市化对建成区植被碳吸收和碳储存的影响研究[D].杭州:浙江大学,2010.]

[12]Tan Kun.Research on Hyperspectral Remote Sensing Image Classification based on Support Vector Machine[D].Xuzhou:China University of Mining and Technology,2010.[谭琨.基于支持向量机的高光谱遥感影像分类研究[D].徐州:中国矿业大学,2010.]

[13]Potter C S,Randerson J T,Field C B,et al.Terrestrial Ecosystem Production:A Process Model based on Global Satellite and Surface Data[J].Global Biochemical Cycle,1993,7:811-841.

[14]Dong Dan,Ni Jian.Modeling Changes of Net Primary Productivity of Karst Vegetation in Southwestern China Using the CASA Model[J].Acta Ecologica Sinica,2011,31(7):1855-186.[董丹,倪健.利用CASA模型模拟西南喀斯特植被净第一性生产力[J].生态学报,2011,31(7):1855-1866.]

[15]Zhu Wenquan,Pan Yaozhong,Long Zhonghua,et al.Estimating Net Primary Productivity of Terrestrial Vegetation based on GIS and RS:A Case Study in Inner Mongolia,China[J].Journal of Remote Sensing,2005,9(3):300-307.[朱文泉,潘耀忠,龙中华,等.基于GIS和RS的区域陆地植被NPP估算-以中国内蒙古为例[J].遥感学报,2005,9(3):300-307.]

[16]Pang Jingpeng,Xu Zongxue,Liu Changming.Weather Generator and Database in the SWAT Model[J].Journal of China Hydrology,2007,27(5):25-30.[庞靖鹏,徐宗学,刘昌明.SWAT模型中天气发生器与数据库构建及其验证[J].水文,2007,27(5):25-30.]

[17]Zuo Dakang,Wang Yixian,Chen Jiansui,Characteristics of the Distribution of Total Radiation in China[J].Acta Meteorologica Sinica,1963,33(1):78-95.[左大康,王懿贤,陈建绥.中国地区太阳总辐射的空间分布特征[J].气象学报,1963,33(1):78-95.]

[18]Zhu Wenquan.Estimation of Net Primary Productivty of Chinese Terrestrial Vegetation based on Remote Sensing and Its Relationship with Global Climate Change[D].Beijing:Beijing Normal University,2005.[朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D].北京:北京师范大学,2005.]

[19]Tan K,Li E Z,Du P J.Estimation of Net Primary Productivity Using Multi-Scale Remote Sensing Data in Xuzhou,China[C]// Earth Observation and Remote Sensing Applications (EORSA),2012 Second International Workshop on,Shanghai,2012.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.