Please wait a minute...
img

官方微信

遥感技术与应用  2013, Vol. 28 Issue (4): 707-713    DOI: 10.11873/j.issn.1004-0323.2013.4.707
模型与反演     
基于Bhattacharyya距离的典型地物波谱特征差异性分析
程熙1,2,沈占锋1,周亚男1,2,夏列钢1,2,骆剑承1
(1.中国科学院遥感与数字地球研究所,北京 100101;2.中国科学院大学,北京 100049)
The Spectral Characteristics Separability Analysis of Spectral Database of Typical Objects of Land Surface based on Bhattacharyya Distance
Cheng Xi1,2,Shen Zhanfeng1,Zhou Ya nan1,2,Xia Liegang1,2,Luo Jiancheng1
(1.Institute of Remote Sensing and Digtal Earth,Chinese Academy of Sciences,Beijing 100101,China;
2.University of Chinese Academy of Science,Beijing 100049,China;)
 全文: PDF(1802 KB)  
摘要:

地物波谱数据主要应用于定量遥感与影像分类等相关基础研究,对各条光谱曲线之间进行定量化的光谱差异性分析具有重要意义。从USGS及JHU地物波谱库中挑选了在土地覆盖分类层次具有意义的植被(73条)、人工材料(100条)与土壤(30条)3种类型共203条地物波谱数据,以分层分类体系在4.2~2.5 μm的波长范围内分析比较各类典型地物材料的光谱特征,以B距离(Bhattacharyya Distance)作为指标定量计算不同类别地物波谱间的光谱差异性。结果表明:波谱库中金属、砖石和混凝土3类人工材料光谱对于植被、土壤等自然材料光谱具有较大的光谱差异性,而塑料与自然地物间的光谱差异度最小,在此基础上统计了最能反映这些地物光谱特征差异的最优波段。该方法能够量化多种光谱曲线间的差异性并得到最佳的区分波段,从而为地物材料光谱及高光谱数据分类提供参考。

关键词: 波谱库Bhattacharyya距离光谱特征光谱差异遥感    
Abstract:

Typical land surface spectrum data are mainly applied in related basic research of quantitative remote sensing and image classification.We selected representatively spectral library set of vegetation spectrum(73 items),manmade spectrum(100 items)and soil spectrum(30 items) from USGS and JHU  spectral  library,and analysed typical separability features of materials spectral features in 4.2~2.5 μm wavelength range within a hierarchical classification scheme,Application of Bhattacharyya distance to quantitatively calculated among different categories objects spectrum spectral differences:the calculation results show that spectrum separability metal,brick and concrete manmade material spectrum for vegetation,soil and other natural materials spectrum have greater spectral differences,and separability of plastic between natural features is smaller.Additionally,an evaluation of the most suitable wavelengths for separation of spectral library set identified specific spectral features that provided the best separation.Based on the statistical characteristics of spectral differences could reflect the optimal band.The study provides a basic knowledge reference of spectral discrimination analysis in a variety of material spectrum and also have the certain reference significance of remote sensing image land classification in a larger scale.

Key words: Spectral library    Bhattacharyya distance    Spectral analysis    Spectral discrimination    Remote sensing
收稿日期: 2011-12-21 出版日期: 2013-08-14
:  TP 79  
基金资助:

国家自然科学基金项目(40871203\,40971228),国家863计划项目(2009AA12Z148,2009AA12Z123),水体污染控制与治理科技重大专项项目(2008ZX07318-001)。

通讯作者: 沈占锋(1977-),男,黑龙江大庆人,副研究员,主要从事遥感信息提取与地学计算研究。E-mail:shenzf@irsa.ac.cn。    
作者简介: 程熙(1982-),男,四川乐山人,博士研究生,主要从事遥感信息提取与应用研究。E-mail:chengxi@irsa.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程熙
沈占锋
周亚男
夏列钢
骆剑承

引用本文:

程熙,沈占锋,周亚男,夏列钢,骆剑承. 基于Bhattacharyya距离的典型地物波谱特征差异性分析[J]. 遥感技术与应用, 2013, 28(4): 707-713.

Cheng Xi,Shen Zhanfeng,Zhou Ya nan,Xia Liegang,Luo Jiancheng. The Spectral Characteristics Separability Analysis of Spectral Database of Typical Objects of Land Surface based on Bhattacharyya Distance. Remote Sensing Technology and Application, 2013, 28(4): 707-713.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2013.4.707        http://www.rsta.ac.cn/CN/Y2013/V28/I4/707

[1]Ben-Dor E,Levin N,Saaroni H.A Spectral based Recognition of the Urban Environment Using the Visible and Near-infrared Spectral Region (0.4~1.1 μm):A Case Study over Tel-Aviv,Israel[J].International Journal of Remote Sensing,2001,22(11):2193-2218.

[2]Green R O,Eastwood M L,Sarture C M,et al.Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)[J].Remote Sensing of Environment,1998,65(3):227-248.

[3]Wang Jindi,Zhang Lixin,Liu Qinghuo,et al.The Spectral Database of Typical Objects of Land Surface[M].Beijing:Science Press,2009.[王锦地,张立新,柳钦火,等.中国典型地物波谱知识库[M].北京:科学出版社,2009.]

[4]Shi Jian,Liu Qinhuo,Wen Jianguang,et al.Design and Realization of the Service Platform for Typical Ground Objects Spectrum Data in China based on E-government[J].Remote Sensing Technology and Application,2011,26(4):520-526.[施建,柳钦火,闻建光,等.面向电子政务的全国典型地物波谱数据服务平台设计与实现[J].遥感技术与应用,2011,26(4):520-526.]

[5]Clark R N,Swayze G A,Wise R,et al.USGS Digital Spectral Library Splib06a:U.S.Geological Survey,Digital Data Series 231[EB/OL].http://speclab.cr.usgs.gov/spectral.lib06,2007,2012.

[6]Baldridge A M,Hook S J,Grove C I,et al.The ASTER Spectral Library Version 2.0[J].Remote Sensing of Environment,2009,113(4):711-715.

[7]Franke J,Roberts D A,Halligan K,et al.Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of Hyperspectral Imagery for Urban Environments[J].Remote Sensing of Environment,2009,113(8):1712-1723.

[8]Ridd M K.Exploring a V-I-S (Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis Through Remote Sensing:Comparative Anatomy for Cities[J].International Journal of Remote Sensing,1995,16(12):2165-2185.

[9]Herold M,Roberts D A,Gardner M E,et al.Dennison,Spectrometry for Urban Area Remote Sensing—Development and Analysis of a Spectral Library from 350 to 2400 nm[J].Remote Sensing of Environment,2004,91(3-4):304-319.

[10]Xuan G,Chai P,Wu M.Bhattacharyya Distance Feature Selection[C]//Proceedings of the 13th International Conference on Pattern Recognition,Vienna,Austria,1996.

[11]Mausel P W,Kramber W J,Lee J K.Optimum Band Selection for Supervised Classification of Multispectral Data[J].Photogrammetric Engineering and Remote Sensing,1990,56:55-60.

[12]Jimenez L O,Landgrebe D A.Hyperspectral Data analysis and Supervised Feature Reduction via Projection Pursuit[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(6):2653-2667.

[13]Bruzzone L,Conese C,Maselli F,et al.Multisource Classification of Complex Rural Areas by Statistical and Neural-network Approaches[M].Bethesda,MD:ETATS-UNIS,American Society for Photogrammetry and Remote Sensing,1997.

[14]Landgrebe D.Hyperspectral Image Data Analysis[J].IEEE Signal Processing Magazine,2002,19(1):17-28.

[15]Biehl L,Landgrebe D.MultiSpec——A Tool for Multispectral-hyperspectral Image Data Analysis[J].Computers & Geosciences,2002,28(10):1153-1159.

[16]Du Huaqiang,Jin Wei,Ge Hongli,et al.Using Fractal Dimensions of Hyperspeetral Curves to Analyze the Healthy Status of Vegetation[J].Spectroscopy and Spectral Analysis,2009,(8):2136-2140.[杜华强,金伟,葛宏立,等.用高光谱曲线分形维数分析植被健康状况[J].光谱学与光谱分析,2009,(8):2136-2140.]

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[5] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[6] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[7] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[8] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[9] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[10] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[11] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[12] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[13] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[14] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[15] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.