Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (1): 40-45    DOI: 10.11873/j.issn.1004-0323.2014.1.0040
模型与反演     
那曲典型草地植被光谱特征分析
杨凯1,2,沈渭寿2,刘波2,欧阳琰2
(1.南京信息工程大学遥感学院,江苏 南京 210044;
2.环境保护部南京环境科学研究所,江苏 南京 210042)
Research on Spectral Reflectance Characteristics for Naqu Typical Grassland
Yang Kai1,2,Shen Weishou2,Liu Bo2,Oyang Yan2
(1.Institute of Remote sensing,Nanjing University of Information Science &Technology,Nanjing 210044,China; 2.Nanjing Institute of Environmental Sciences,Ministry of Environmental Protection,Nanjing 210042,China)
 全文: PDF(2623 KB)  
摘要:

遥感是大尺度生态研究的重要工具之一,而地面植物群落特征与其光谱特征之间的关系是解译遥感影像的关键。地面实测数据由于其高空间分辨率和高光谱分辨率,能够准确反映地物光谱信息,可以用来指导卫星遥感解译工作,同时为遥感监测草地退化、草地模型建立等提供数据支持。选取西藏那曲地区的优势植被类型作为研究对象,利用ASD  FieldSpec 3便携式光谱仪测定优势种的冠层光谱并进行比较,并取其中一种优势种测量其在不同覆盖度和不同生长期的光谱反射特点。研究结果表明:①不同植被群落冠层光谱具有特殊的光谱曲线,可见光波段光谱反射率依次是紫花针茅、小嵩草和藏北嵩草,近红外波段光谱反射率则依次是小嵩草、藏北嵩草和紫花针茅;红边位置可以识别藏北嵩草,但是不能区分小嵩草和紫花针茅;②不同覆盖度的小嵩草红边、“绿峰”位置不随覆盖度的变化而发生变化;连续统去除后得到吸收深度随覆盖度的增加而变大,吸收峰面积随覆盖度的增加而增加;③小嵩草衰退期内,在可见光波段和红边波段,冠层光谱反射率随着叶绿素含量的减少而下降,出现“红边蓝移,绿峰下降”的现象。

关键词: 西藏那曲光谱反射率光谱特征植被    
Abstract:

Remote sensing is one of the important Methods for the large\|scale ecological research.The relationship between terrestrial plant community characteristics and their spectral characteristics is the key to interpret  remote sensing images.Because of its high spatial and spectral resolutions,ground experimental data would be an accurate reflection of spectral information of surface features.So as a good guide for satellite remote sensing interetation,ground experimental data can provide supporting data for remote sensing monitoring of grassland degradation and building of grassland model.This study selected the dominant vegetation types of the Naqu Prefecture in Tibet ,the canopy spectra measuring by ASD Field Spec 3.One of the dominant species ,as an example measured in different coverage of different period.The results show that:①Canopy spectra of different vegetation communities with special spectral curve,the visible bands spectral reflectance turn Stipa purpurea,Kobresia pygmaea ,K.tibetica,near\|infrared bands spectral reflectance in turn is K.pygmaea,K.tibetica,Stipa purpurea;red edge position can be identified the K.tibetica,but not be able to distinguish between K.pygmaea and Stipa purpurea;②The position of K.pygmaea's red edge,green peak does not change with the increase of coverage;Continuum removal absorption depth and area increased with degree of coverage;③In the recession period,the visible and red edge band,Canopy spectral reflectance decreases with the reduction of the chlorophyll content decreased,becoming “Red edge blue shift,the green peak decline”.

Key words: Naqu in Tibet    Spectral reflectance    Spectral characteristics    Vegetation
收稿日期: 2012-12-03 出版日期: 2014-05-14
:  TP 79  
基金资助:

国家环保公益性行业科研专项(200909050,201209032)。

作者简介: 杨 凯(1988-),男,江苏常熟人,硕士研究生,主要从事遥感在生态方面的应用研究。Email:yangkjack@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨凯
沈渭寿
刘波
欧阳琰

引用本文:

杨凯,沈渭寿,刘波,欧阳琰. 那曲典型草地植被光谱特征分析[J]. 遥感技术与应用, 2014, 29(1): 40-45.

Yang Kai,Shen Weishou,Liu Bo,Oyang Yan. Research on Spectral Reflectance Characteristics for Naqu Typical Grassland. Remote Sensing Technology and Application, 2014, 29(1): 40-45.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.1.0040        http://www.rsta.ac.cn/CN/Y2014/V29/I1/40

[1]Wang Huanjiong,Fan Wenjie,Cui Yaokui,et al.Hypersectral Remote Sensing Monitoring of Grassland Degradation[J].Spectroscopy and Spectral  Analysis,2010,30(10):2734-2738.[王焕炯,范闻捷,崔要奎,等.草地退化的高光谱遥感监测方法[J].光谱学与光谱分析,2010,30(10):2734-2738.]

[2]Du Ziqiang,Wang Jian,Li Jianlong,et al.Remote Sensing based Monitor Dynamically Grassland in Typical Regions,Middle and Uper  Reaches of Heihe River Basin,Western China[J].Journal of Agricultural Engineering,2010,26(4):180-185.[杜自强,王建,李建龙,等.黑河中上游典型地区草地植被退化遥感动态监测[J].农业工程学报,2010,26(4):180-185.]

[3]Gao Zhanguo,Zhang Liquan.Measuring and Analyzing of the Multi-seasonal Spectral Characteristics for Saltmarsh Vegetation in Shanghai[J].Journal of Agricultural Engineering,2006,26(6):793-800.[高占国,张利权.上海盐沼植被的多季相地面光谱测量与分析[J].生态学报,2006,26(6):793-800.]

[4]Zhang Yiran,Gong Zhaoning,Zhao Wenji,et al.Typical Plant Spectral Characteristics Analysis in Wild Duck Lake along Water Environment Grdient[J].Spectroscopy and Spectral Analysis,2010,32(3):743-748.[张翼然,宫兆宁,赵文吉,等.水分环境梯度下野鸭湖湿地典型植被光谱特征分析[J].光谱学与光谱分析,2012,32(3):743-748.]

[5]Liu Xuehua,Sun Yan,Wu Yan,et al.Reduction of Hyperspectral Dimensions and Construciton of Discriminating Models for Identifying Wetland Plant Species[J].Spectroscopy and Spectral Analysis,2012,32(2):459-464.[刘雪华,孙岩,吴燕,等.光谱信息降纬及判别模型建立用于识别湿地植物物种[J].光谱学与光谱分析,2012,32(2):459-464]

[6]Zhang Kai,Guo Ni,Wang Runyuan,et al.Research on Spectral Reflectance Characteristics for Desert Meadow of Northwest China[J].Advances in Earth Science,2006,21(10):1063-1069[张凯,郭铌,王润元,等.西北荒漠草甸植被光谱反射特征研究[J].地球科学进展,2006,21(10):1063-1069.]

[7]Wang Xuhong,Xiao Ping,Guo Jianming,et al.Research on Dimensionality Reduction Technology of  Hyperspectral Data[J].Bulletin of Soil and Water Conservation,2006,12(6):89-91.[王旭红,肖平,郭建明,等.高光谱数据降纬技术研究[J].水土保持通报,2006,12(6):89-91.]

[8]Wen Xingping,Hu Guangdao,Yang Xiaofeng,et al.Extracting Vegetation Coverage from Hyperspectral Remote Sensing Image Using Spectral Feature Fitting[J].Geography and Geoinformation Science,2008,24(1):27-30.[温兴平,胡光道,杨晓峰,等.基于光谱特征拟合的高光谱遥感影像植被覆盖度提取[J].地理与地理信息科学,2008,24(1):27-30.]

[9]Nie Zhidong,Han Jianguo,Zhang Luda,et al.Applicationos of Near Infrared Reflectance Spectroscopy Technique to Grassland Ecology Research[J].Spectroscopy and Spectral Analysis,2007,27 (4):691-696.[聂志东,韩建国,张录达,等.近红外光谱技术在草地生态学研究中的应用[J].光谱学与光谱分析,2007,27(4):691-696.]

[10]Zhang Chunmei,Zhang Jianguo.Research on the Spectral Characteristics of Grassland in Arid Regions based on Hyperspectral Image[J].Spectroscopy and Spectral Analysis,2012,32(2):445-448.[张春梅,张建国.基于高光谱影像的干旱区草地光谱特征分析[J].光谱学与光谱分析,2012,32(2):445-448.]

[11]Yan Yan,Zhang Jianguo,Zhang Jinhua,et al.The Belowground Biomass in Alpine Grassland in Nakchu Prefecture of Tibet[J].The Journal of Ecology,2005,25(11):26-31.[嫣燕,张建国,张锦华,等.西藏那曲地区高寒草地地下生物量[J].生态学报,2005,25(11):26-31.]

[12]Tong Qingxi,Zhang Bin,Zheng Lanfen,et al.Remote Sensing:Principle,Technology and Application[M].Beijing:Higher Education Press,2006.[童庆禧,张兵,郑兰芬,等.高光谱遥感——原理、技术与运用[M].北京:高等教育出版社,2006.]

[13]Sun Yan.Analysis on Hyperspectral Characteristics of Wetland Vegetation and Species Identification Model[D].Beijing:Environmental Science and Engineering Tsinghua University,2008.[孙岩.湿地植被高光谱特征分析与物种识别模型构建[D].北京:清华大学环境科学与工程,2008.]

[14]Liu Weidong,Xiang Yueqing,Zheng Lanfen,et al.Relationships between Rice LAI,CH.D and Hyperspectra Data[J].Journal of Remote Sensing,2000,4(4):279-283.[刘伟东,项月琴,郑兰芬,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报,2000,4(4):279-283.]

[15]Tang Yanling,Wang Jingfeng,Wang Xiuzhen,et al.Comparison of the Characteristics of Hyperspectra and the Red Edge in Rice,Corn and Cotton[J].Agricultural Sciences in China,2004,37(1):29-35.[唐延林,黄敬峰,王秀珍,等.水稻、玉米、棉花的高光谱及其红边特征比较[J].中国农业科学,2004,37(1):29-35.]

[16]Shevyrnogov A P,Sidko A F.Remote Diagnostics of Vegetation Covers by Spectral Brightness of Plants[J].Advances in Space Research,1995,16(10):185-188.[17]Li Huan.Based on the Spectral Data of Chlorophyll Content Estimation of Citrus[D].Chongqing:Southwestern University,2009.[李欢.基于高光谱数据的柑橘叶绿素含量估算研究[D].重庆:西南大学,2009.]

[1] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[2] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[3] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[4] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[5] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[6] 王恒,杨昊翔,张丽. 海上丝绸之路沿线区域植被覆盖变化特征[J]. 遥感技术与应用, 2018, 33(4): 703-712.
[7] 林利斌,鲍艳松,左泉,房世波. 基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J]. 遥感技术与应用, 2018, 33(4): 750-758.
[8] 滕佳昆,刘宇,丁明涛. 基于RGB图像的刺槐季节变化监测适用指数研究[J]. 遥感技术与应用, 2018, 33(3): 476-485.
[9] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[10] 段金亮,王杰,张婷. 一种基于光谱归一化下的植被覆盖度反演算法[J]. 遥感技术与应用, 2018, 33(2): 252-258.
[11] 杨朦朦,汪汇兵,欧阳斯达,范奎奎,戚凯丽. 基于双树复小波分解的BP神经网络遥感影像分类[J]. 遥感技术与应用, 2018, 33(2): 313-320.
[12] 谢京凯,王福民,王飞龙,张东尼. 面向水稻LAI监测的植被指数土壤调节参数修正[J]. 遥感技术与应用, 2018, 33(2): 342-350.
[13] 王光镇,王静璞,邹学勇,韩柳,宗敏. 遥感技术估算非光合植被覆盖度研究综述[J]. 遥感技术与应用, 2018, 33(1): 1-9.
[14] 王佳鹏,施润和,张超,刘浦东,曾毓燕. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6): 1056-1063.
[15] 李伟娜,韦玮,张怀清,刘华. 基于多角度高光谱数据的高寒沼泽湿地植被生物量估算[J]. 遥感技术与应用, 2017, 32(5): 809-817.