Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (1): 46-53    DOI: 10.11873/j.issn.1004-0323.2014.1.0046
模型与反演     
基于LST-EVI特征空间的土壤水分含量反演
王秀君,陈健
(南京信息工程大学遥感学院,江苏 南京 210044)
Soil Moisture Estimation based on the LST-EVI Feature Space
Wang Xiujun,Chen Jian  
(School of Remote Sensing,Nanjing University of Information Science & Technology,Nanjing 210044,China)
 全文: PDF(3473 KB)  
摘要:

干旱是人类历史上的重大自然灾害之一,而土壤水分是干旱监测最重要的指标。利用遥感手段反演地表土壤水分,可以充分反映土壤水分的时空变化特征,适合进行大范围动态监测。研究基于Landsat TM数据,运用普适性单通道算法得到地表温度(LST,Land Surface Temperature),然后选用增强型植被指数(EVI,Enhanced Vegetation Index),构建了LST\|EVI特征空间,计算出温度植被干旱指数(TVDI,Temperature\|Vegetation Dryness Index)。在对实测土壤含水量数据和对应TVDI值进行回归分析的基础上,反演出2010年6月14日黄骅市自然地表20 cm深度处的体积含水量。结果表明:TVDI方法在该研究区是完全可行的,拟合精度较高;研究区自然地表土壤体积含水量分布差异明显,中等含水量地区面积最大,西南和部分北部地区含水量较低,而含水量高的区域主要分布在苇洼和沿海地区。

关键词: 土壤水分TM数据地表温度增强型植被指数TVDI    
Abstract:

Drought is one of the most catastrophic natural disasters in human history.Soil moisture is the key parameter in study of drought monitoring.Application of remote sensing techniques for estimation of surface soil moisture can adequately reveal the spatial and temporal variations,which is suitable for a large scale dynamic monitoring.Based on Landsat TM data,land surface temperature LST was derived by means of universal single\|channel algorithm.EVI was acquired to build the LST\|EVI feature space,and calculated the temperature vegetation dryness index(TVDI).TVDI and observed soil moisture data were analyzed and a linear curve was fitted to estimate volumetric soil moisture content in the depth of 20cm for June 14th,2010,in areas of natural surface in Huanghua City.TVDI is feasible for monitoring soil moisture content of the study area.Spatial distribution of volumetric soil moisture content varied significantly.Area of moderate soil moisture was the largest.Areas with critically low soil moisture content mostly were upland fields,which is located in the southwest and part of the north region.However,the areas with high soil moisture content mainly located in the reed swamp and coastal bare land.

Key words: Soil moisture    TM    LST    EVI    TVDI
收稿日期: 2012-10-08 出版日期: 2014-05-14
:  P 468  
基金资助:

国家自然科学基金项目“遥感数据支持的不同时间尺度气象因子与东亚飞蝗发生关系机理研究”( 40901239),公益性行业(气象)专项(GYHY200806022)与旱灾防御王秀

作者简介: 君(1988-),女,江苏盐城人,硕士研究生,主要从事定量遥感研究。Email:xjwang8811@gmail.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王秀君
陈健

引用本文:

王秀君,陈健. 基于LST-EVI特征空间的土壤水分含量反演[J]. 遥感技术与应用, 2014, 29(1): 46-53.

Wang Xiujun,Chen Jian. Soil Moisture Estimation based on the LST-EVI Feature Space. Remote Sensing Technology and Application, 2014, 29(1): 46-53.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.1.0046        http://www.rsta.ac.cn/CN/Y2014/V29/I1/46

[1]Narasimhan B,Srinivasan R.Development and Evaluation of Soil Moisture Deficit Index(SMDI)and Evapotranspiration Deficit Index(ETDI)for Agricultural Drought Monitoring[J].Agricultural and Forest Meteorology,2005,133(1-4):69-88.

[2]Chen Huailiang,Mao Liuxi,Feng Dingyuan.A Review:Theories,Methods and Development on Soil Moisture Monitoring by Remote Sensing[J].Remote Sensing Technology and Application,1999,14(2):55-65.[陈怀亮,毛留喜,冯定原.遥感监测土壤水分的理论、方法及研究进展[J].遥感技术与应用,1999,14(2):55-65.]

[3]Watson K,Pohn H A.Thermal Inertia Mapping from Satellites Discrimination of Geologic Units in Oman[J].Journal of Research Geological Survey,1974,2(2):147-158.

[4]Zhang Renhua.Thermal Inertia of Soil Water Content and Its Application[J].Chinese Science Bulletin,1991,36(12):924-927.[张仁华.土壤含水量的热惯量模型及其应用[J].科学通报,1991,36(12):924- 927.]

[5]Yu Tao,Tian Guoliang.The Application of Thermal Inertia Method the Monitoring of Soil Moisture of North China Plain based on NOAA-AVHRR Data[J].Journal of Remote Sensing,1997,1(1):24-31.[余涛,田国良.热惯量法在监测土壤表层水分变化中的研究[J].遥感学报,1997,1(1):24-31.]

[6]Sui Hongzhi,Tian Guoliang,Li Fuqin.Two-layer Model for Monitoring Drought Using Remote Sensing[J].Journal of Remote Sensing,1977,1(3):220-224.[隋洪智,田国良,李付琴.农田蒸散双层模型及其在干旱遥感监测中的应用[J].遥感学报,1997,l(3):220-224.

[7]Chen Huailiang,Feng Dingyuan,Zou Chunhui,et al.Windspeed Impact on Soil Moisture Remote Sensing Terms of NOAA/AVHRR Data[J].Journal of Nanjing Institute of Meteorology,1999,22(2):219-224.[陈怀亮,冯定原,邹春辉,等.用NOAA/AVHRR资料遥感土壤水分时风速的影响[J].南京气象学院学报,1999,2(2):219-224.]

[8]Kogan F N.Application of Vegetation Index and Brightness Temperature for Drought Detection[J].Advance in Space Research,1955,15 :91-100.

[9]Price J C.Using Spatial Context in Satellite Data to Infer Regional Scale Evapotranspiration[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28:940-948.

[10]Carlson T N,Gillies R R,Perry EM.A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Surface Soil Water Content and Fractinal Vegetaional Cover[J].Remote Sensing Review,1994,52:45-59.

[11]Moran M S,Clarke T R,Inoue Y.Estimating Crop Water Deficit Using the Relation between Surface-air Temperature and Spectural Vegetation Index[J].Remote Sensing of Environment,1994,49(3):246-263.

[12]Sandholt I,Rasmussen K,Anderson J.A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status[J].Remote Sensing of Environment,2002,79:213-224.

[13]Wang Pengxin,Gong Jianya,Li Xiaowen.Vegetation-Temperature Condition Index and Its Application for Drought Monitoring[J].Editoral Board of Geomatics and Information Science of Wuhan University,2001,26(5):412-418.[王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用[J].武汉大学学报,2001,26(5):412-418.]

[14]Wan Z M,Wang P X,Li X W.Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index Products for Monitoring Drought in the Southern Great Plains,USA[J].International Journal of Remote Sensing,2004,25(1):61-72.

[15]Goetz S J.Multi-sensor Analysis of NDVI,Surface Temperature and Biophysical Variables at a Mixed Grassland Site[J].International Journal of Remote Sensing,1997,18(1):71-94.

[16]Gillies R R,Carlson T N,Kustas W P.A Verification of the ‘Triangle’ Method for Obtaining Surface Soil Water Content and Energy Fluxes from Remote Measurements of the Normalized Difference Vegetation Index(NDVI)and Surface Radiant Temperature[J].International Journal of Remote Sensing,1997,18(15):3145-3166.

[17]Carlson T N,Capehart W J,Gillies R R.A New Look at the Simplified Method for Remote Sensing of Daily Evapotranspiration[J].Remote Sensing of Environment,1995,54:161-167.

[18]Wang Zhengxing,Liu Chuang,Huete A R.From AVHRR-NDVI to MODIS-EVI:Advances in Vegetation Index Research[J].Acta Ecologica Sinica,2003,23(5):979-987.[王正兴,刘闯,Huete A R.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5)979-987.]

[19]Wang Changyao,Luo Chengfeng,Qi Shuhua,et al.A Method of Land Cover Classification for China based on NDVI-Ts Space[J].Journal of Remote Sensing,2005,9(1):93-99.[王长耀,骆成凤,齐述华,等.NDVI-Ts空间全国土地覆盖分类方法研究[J].遥感学报,2005,9(1):93-99.]

[20]Liu H Q,Huete A R.A Feedback based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise[J].IEEE International Geoscience and Remote Sensing,1995,33: 457-465.

[21]Kaufman Y J,Tanre D.Atmospherically Resistant Vegetation Index(ARVI)for EOS-MODIS[J].IEEE International Geoscience and Remote Sensing,1992,30:261-270.

[22]Huete A,Didan K,Miura T,et al.Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices[J].Remote Sensing of Environment,2002,83(1-3):195-213.

[23]Xu Xiaojun,Zhou Guomo,Du Huaqiang,et al.Estimation of Aboveground Biomass of Phyllostachys Praecox Forest based on Landsat Thematic Mapper Image[J].Scientia Silvae Sinicae,2011,47(9):1-6.[徐小军,周国模,杜华强,等.基于Landsat TM数据估算雷竹林地上生物量[J].林业科学,2011,47(9):1-6.]

[24]He Zhonghua,Chen Xiaoxiang,Liang Hong,et al.Remote Sensing Monitoring of Karst Basin Water-holding on Vegetation Index[J].Territory & Natural Resources Stuty,2012(4):48-51.[贺中华,陈晓翔,梁虹,等.基于植被指数的喀斯特流域赋水动态变化遥感监测研究[J].国土与自然资源研究,2012(4):48-51.]

[25]Jiménez-Mufinozoi J C,Sobrino J A.A Generalized Single-channel Method for Retrieving Land Surface Temperature from Remote Sensing Data[J].Journal of Geophysical Research,2003,108(D22):4688-4695.

[26]Qin Zhihao,Li Wenjuan,Xu Bin,et al.The Estimation of Land Surface Emissivity for Landsat TM6[J].Remote Sensing for Land & Resources,2004,3:28-32.[覃志豪,李文娟,徐斌,等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,3:28-32.]

[27]Carlson T N,Ripley D A.On the Relation between NDVI Fractional Vegetation Cover,and Leaf Area Index[J].Remote Sensing of Environment,1997,62(3):241-252.

[28]Mao K B,Qin Z H,Shi J C,et al.A Practical Split-window Algorithm for Retrieving Land Surface Temperature from MODIS Data [J].International Journal of Remote Sensing,2005,26(10):3181-3204.

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 李军,龚围,辛晓洲,高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[5] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[6] 史新,周买春. 基于Landsat 8数据的3种地表温度反演算法在三河坝流域的对比分析[J]. 遥感技术与应用, 2018, 33(3): 465-475.
[7] 郑明亮,黄方,张鸽. 基于TsHARP模型和STITFM算法的地表温度影像融合研究[J]. 遥感技术与应用, 2018, 33(2): 275-283.
[8] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[9] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[10] 李艳,侯金亮,黄春林. 基于Copula函数的地表温度空间降尺度研究[J]. 遥感技术与应用, 2017, 32(5): 818-824.
[11] 向怡衡,张明敏,张兰慧,贺缠生,王一博,白晓. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用, 2017, 32(5): 835-843.
[12] 郑飞,张殿发,孙伟伟,杨刚. 基于ASTER遥感的杭州城市热/冷岛的景观特征分析[J]. 遥感技术与应用, 2017, 32(5): 938-947.
[13] 曹永攀,黄春林,陈玮婧,张莹. 联合同化MODIS地表温度与机载L波段微波亮度温度估计土壤水分[J]. 遥感技术与应用, 2017, 32(4): 606-614.
[14] 王增艳,王建,车涛. 机载L波段微波辐射计数据反演表层土壤水分研究[J]. 遥感技术与应用, 2017, 32(2): 185-194.
[15] 赵泽斌,晋 锐,田伟,亢健,苏阳. 基于SiB2模型的土壤水分降尺度指标的适用性研究[J]. 遥感技术与应用, 2017, 32(2): 195-205.