Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (2): 189-194    DOI: 10.11873/j.issn.1004-0323.2014.2.0189
模型与反演     
CMORPH卫星降水数据在中国区域的误差特征研究
许时光1,牛铮1,沈艳2,旷达3
(1.中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100101;
2.国家气象信息中心,北京 100081;3.西藏高原大气环境科学研究所,西藏 拉萨 850000)
A Research into the Characters of CMORPH Remote Sensing Precipitation Error in China
Xu Shiguang1,Niu Zheng1,Shen Yan2,Kuang Da3
(1.The State Key Laboratory of Remote Sensing Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100101,China;
2.National Meteorological Information Center,Beijing 100181,China;
3.Institute of Tibetan Plateau Atmospheric & Environmental Science,Lhasa 85000,China)
 全文: PDF(2084 KB)  
摘要:

空报数据和漏报数据是高时空分辨率卫星降水产品误差的重要表现形式,研究漏报和空报数据的特征对于改进降水反演算法、提高卫星降水数据的质量具有重要意义。通过对2009年6~8月中国区域内的CMORPH卫星数据(Climate Prediction Center Morphing)与观测站点逐小时降水数据分析,发现CMOPRH数据中的漏报数据和空报数据存在以下特征:①CMORPH数据中空报数据远远高于漏报数据,导致CMORPH数据模拟的降水面积要高于实际降水面,表明空报数据对CMORPH精度的影响要大于漏报数据;②当降水量小于5 mm时,CMORPH的空报率随着降水量的升高呈现出非线性的下降趋势,经过二次项拟合之后的相关系数达到0.99以上;③CMORPH中空报降水数据的面积与总降水面积之间存在很强的正相关性,二者在6~8月的相关系数分别达到0.9133、0.9474和0.9482,因此可以通过CMORPH数据的总降水面积对空报降水面积进行估算;④从CMORPH空报率的空间分布上看,我国东南沿海以及东北地区的空报率较低,而西北、青藏高原地区的空报率最高。

关键词: CMORPH空报数据降水量误差分析    
Abstract:

The missed and false alarmed precipitation is the main drawback of high-resolution satellite precipitation estimation.In this study,the missed and false alarmed of CMORPH(Climate Prediction Center morphing) with spatial resolution of 0.1°×0.1°and temporal resolution of an hour were calculated by comparing with ground observations.Then the false alarmed ratio was calculated and compared with precipitation ratio and precipitation areas.The results show that:① There is a huge number of false alarmed data in CMORPH which is much more than the missed data,and leads to the precipitation areas of CMORPH enlarged compared with ground observations;②The relationship between the false alarmed area and the total precipitation area is very strong in June,July and August,and the correlation coefficients are 0.9133、0.9474 and 0.9482 respectively.So the area of false alarmed can be estimated by the total precipitation area of CMORPH;③ When the rainfall is below 5mm,the false alarming ratio is related to the rainfall value.As the rainfall value increasing,the false alarming ratio tends to decline;④ The spatial distribution of the false alarming ratio present obvious regional characteristic.The false alarming ratio in southeast,northeast is the lowest,while in the west of china is the highest.All of the conclusion above can be used as the scientific basis in building correction model of CMORPH.

Key words: CMORPH    False alarming    Precipitation    Error analysis
收稿日期: 2012-11-28 出版日期: 2014-05-14
:  P 412.27  
基金资助:

公益性行业(气象)科研专项经费(GYHY201006042),国家973计划项目(2013CB733405,2010CB950603)和国家自然科学基金(41301498)共同资助。

通讯作者: 牛铮(1965-),男,北京人,博士,研究员,主要从事全球变化遥感、遥感成像机理等方面研究。Email:niuz@irsa.ac.cn。   
作者简介: 许时光(1984-),男,河北保定人,博士研究生,主要从事卫星遥感降雨研究。Email:haibinggis@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许时光
牛铮
沈艳
旷达

引用本文:

许时光,牛铮,沈艳,旷达. CMORPH卫星降水数据在中国区域的误差特征研究[J]. 遥感技术与应用, 2014, 29(2): 189-194.

Xu Shiguang,Niu Zheng,Shen Yan,Kuang Da. A Research into the Characters of CMORPH Remote Sensing Precipitation Error in China. Remote Sensing Technology and Application, 2014, 29(2): 189-194.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.2.0189        http://www.rsta.ac.cn/CN/Y2014/V29/I2/189

[1]Zhang Qiang,Zhang Jie,Song Guowu,et al.Research on Atmospheric Water-vapor Distribution over Qilianshan Mountains[J].Advances in Water Science,2007,18(5):668-673.[张强,张杰,孙国武,等.祁连山山区空中水汽分布特征研究[J].气象学报,2007,65(4):633-643.]

[2]Solol Z,Bliznak V.Areal Distribution and Precipitation-altitude Relationship of Heavy Short-term Precipitation in the Czech Republic in the Warm Part of the Year[J].Atmospheric Research,2009,94(4):652-662.

[3]Simpson J,Adler R F,North G R.A Proposed Tropical Rainfall Measuring Mission(TRMM) Satellite[J].Bulletin of the American Meteorological Society,1988,69(3):278-295.

[4]Joyce R J,Janowiak J E,Arkin P A,et al.CMORPH:A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution[J].Journal of Hydrometeorology,2004,5(3):487-503.

[5]Wu Qingmei,Cheng Minghu,Miao Chunsheng.Study of Microwave Characteristics of Rainfall over South China and Yangtze River Basin Using TRMM Data[J].Journal of Applied Meteorological Science,2003,14(2):206-214.[吴庆梅,程明虎,苗春生.用TRMM资料研究江淮、华南降水的微波特性[J].应用气象学报,2003,14(2):206-214.]

[6]Min Airong,Zhang Cuirong,Wang Xiaofang.Retireval of Precipitation over Land Using Microwave Imagers[J].Meteorological Science and Technology,2008,36(4):495-498.[闵爱荣,张翠荣,王晓芳.基于微波成像仪资料反演陆面降水[J].气象科技,2008,36(4):495-498.]

[7]Ferraro R R.SSM/I Derived Global Rainfall Estimates for Climatological Applications[J].Journal of Geophysical Research.1997,102(16):715-735.

[8]Shen Y,Xiong A Y,Wang Y,et al.Performance of High-resolution Satellite Precipitation Products over China[J].Journal of Geophysical Research,2010,115:D02114.

[9]Diogo C B,Dias R C,Paiva D,et al.A Comparison of Amazon Rainfall Characteristics Derived from TRMM,CMORPH and the Brazilian National Rain Gauge Network[J].Journal of Geophysical Research:Atmospheres,2011,116(D19):D19105:1-D19105:12.

[10]Zeweldi D A,Gebremichael M.Evaluation of CMORPH Precipitation Products at Fine Space-time Scales[J].Journal of Hydrometeorology,2009,10(1):300-307.

[11]Shen Yan,Feng Mingnong,Zhang Hongzheng,et al.Interpolation Methods of China Daily Precipitation Data[J].Journal of Applied Meteorological Science,2010,21(3):279-285.[沈艳,冯明农,张洪政,等.我国逐日降水量格点化方法[J].应用气象学报,2010,21(3):279-285.]

[12]Michaelides S,Levizzani V,Anagnostou E,et al.Precipitation:Measurement,Remote Sensing,Climatology and Modeling[J].Atmospheric Research,2009,94:512-533

[13]Weinman J A,Guetter P J.Determination of Rainfall Distributions from Microwave Radiation Measured by the Numbus-7 ESMR[J].Journal of Applied Meteorological,1977,16:437-442.

[1] 范锦龙,张晔萍,李昌宝,许文波,刘少杰,薛飞,覃志豪. 风云卫星中分辨率遥感数据几何定位误差分析[J]. 遥感技术与应用, 2018, 33(4): 621-627.
[2] 王玉丹,南卓铜,陈浩,吴小波. 基于K 最近邻模型的青藏高原CMORPH日降水数据的订正研究[J]. 遥感技术与应用, 2016, 31(3): 607-616.
[3] 刁宁辉,孙从容,崔倩,吴奎桥,张为良,郝轶萌. RFSCAT散射计数据地理定位与误差分析[J]. 遥感技术与应用, 2015, 30(3): 518-526.
[4] 张亚利, 游扬声, 兰敬松. 基线误差、相位误差和大气延迟误差对InSAR数据处理的影响分析[J]. 遥感技术与应用, 2010, 25(3): 399-403.
[5] 陆文, 严卫, 施健康, 任建奇. 一种适用于WindSat的地理定位方法[J]. 遥感技术与应用, 2010, 25(1): 126-131.
[6] 徐曦煜,刘和光,许 可. 基于海洋二号高度计内定标方案的工程设计和误差分析[J]. 遥感技术与应用, 2007, 22(2): 141-146.
[7] 阎敬业,姜景山,张云华. 影响DDS输出Chirp信号频谱的主要参数分析[J]. 遥感技术与应用, 2005, 20(1): 182-188.
[8] 陈洪滨 王普才 孙海冰 吕达仁. 从SSM/I亮温反演海洋上大气可降水量[J]. 遥感技术与应用, 1998, 13(1): 1-7.