Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (3): 511-516    DOI: 10.11873/j.issn.1004-0323.2014.3.0511
图像与数据处理     
基于遥感影像的军事阵地动态监测技术研究
许夙晖,慕晓冬,柯冰,王晓日
(第二炮兵工程大学信息工程系,陕西 西安710025)
Dynamic Monitoring of Military Position based on Remote Sensing Image
Xu Suhui,Mu Xiaodong,Ke Bing,Wang Xiaori
(The Department of Information Engineering,The Second Artillery Engineering University,Xi’an 710025,China)
 全文: PDF(21646 KB)  
摘要:

针对部队快速机动作战的军事要求,提出基于高分辨率遥感影像的军用阵地动态监测方法。借助面向对象的多尺度分割技术将阵地影像分割为同质对象,以提取各个对象的特征;针对监督分类和非监督分类的弊端,提出通过一定的先验知识制定分类规则的方法对遥感影像进行地物识别,在此基础上定性和定量地输出变化检测结果。实验结果表明:利用基于对象影像分析方法具有较高的识别精度,能够有效监测军事阵地变化。

关键词: 军事阵地面向对象多尺度变化检测    
Abstract:

According to the demands of rapid maneuvering of military forces,the method of dynamic monitoring of military position based on remote sensing image is proposed.With the help of object\|oriented multi\|scale segmentation,the image of position is segmented into homogeneous objects for extracting their features,which avoids the phenomenon of “the different bodies with the same spectrum” and “content with the different spectrums”.For the trivialness of supervised classification and the blindness of unsupervised classification,through the apriori knowledge the method on making rules for the classification is proposed to identify the objects of the remote sensing images,and on this basis the results of change detection are output qualitatively and quantitatively.The experiments results show that the objected\|oriented method has high identification precision and can effectively monitor the military position.


Key words: Military position    Object-oriented    Multi-scale    Change detection
收稿日期: 2013-05-02 出版日期: 2014-06-23
ZTFLH:  TP 79  
基金资助:

许夙晖(1989-),女,河南焦作人,博士研究生,主要从事军事阵地遥感图像的研究。Email:xu_suhui@163.com

通讯作者: 慕晓冬(1965-),男,山东潍坊人,博士生导师,主要从事指挥自动化方面的研究。Email:zpxhh@163.com。    
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许夙晖
慕晓冬
柯冰
王晓日

引用本文:

许夙晖,慕晓冬,柯冰,王晓日. 基于遥感影像的军事阵地动态监测技术研究[J]. 遥感技术与应用, 2014, 29(3): 511-516.

Xu Suhui,Mu Xiaodong,Ke Bing,Wang Xiaori. Dynamic Monitoring of Military Position based on Remote Sensing Image. Remote Sensing Technology and Application, 2014, 29(3): 511-516.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.3.0511        http://www.rsta.ac.cn/CN/Y2014/V29/I3/511

[1]Zhong Jiaqiang.Change Detection based on Multitemperal Remote Sensing Image[D].Changsha:National University of Defense Technology,2005.[钟家强.基于多时相遥感图像的变化检测[D].长沙:国防科技大学,2005.]

[2]Deng Xiangjin.The Remote Sensing Imagery Change Detection Using Pattern Recognition Knowledge[D].Beijing:Chinese Academy of Sciences Electronic Research Laboratory,2003.[邓湘金.基于模式识别知识的遥感图像变化检测研究[D].北京:中国科学院电子研究所,2003.]

[3]Mo Hua.A Study of the Key Technology of Military Target Change Detection on the Remote Sensing Image[D].Zhengzhou:The PLA Information Engineering University,2007.[莫华.遥感影像上军事目标变化检测相关关键技术研究[D].郑州:解放军信息工程大学,2007.]

[4]Yan Jie,Liu Jianbo,Tang Weiguang.The Damage Assessment based on Remote Sensing Image Change Detection[J].Radio Engineering,2010,40(4):30-31.[颜洁,刘建波,唐伟广.基于遥感图像变化检测的毁伤效果分析[J].无线电工程,2010,40(4):30-31.]

[5]Singh A.Digital Change Detection Techniques Using Remotely-sensed Data[J].International Journal of Remote Sensing,1989,10(6):989-1003.

[6]Li Song,An Yulun,Hua Houqiang.Automated Method based on Change Detection for Extracting Karst Rock Desertification Information Using Remote Sensing[J].Remote Sensing Technology and Application,2012,27(1):149-153.[李松,安裕伦,华厚强.基于遥感检测的石漠化信息自动提取[J].遥感技术与应用,2012,27(1):149-153.][7]Dennis C D,Steven E F,Monique G D.A Comparison of Pixel-based and Object-based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery[J].Remote Sensing of Enviromemnt,2012,118(15):259-272.

[8]Xu Jingping,Zhao Jianhua,Zhang Fengshou,et al.Objected-Oriented Information Extraction of Pond Aquaculture[J].Remote Sensing for Land and Resources,2013,25(1):82-85.[徐京平,赵建华,张丰收,等.面向对象的池塘养殖用海信息提取[J].国土资源遥感,2013,25(1):82-85.]

[9]Huo Chunlei,Cheng Jian,Lu Hanqing,et al.Object-level Ch-ange Detection based on Multiscale Fusion[J].Acta Automatica Sinica,2008,34(3):251-257.[霍春雷,程建,卢汉清等.基于多尺度融合的对象级变化检测新方法[J].自动化学报,2008,34(3):251-257.]

[10]Peng Haitao, Ke Changqing.Study on Object-oriented Remote Sensing Image Classification based on Multi-levels Segmentation[J].Remote Sensing Technology and Application,2010,25(1):149-154.[彭海涛,柯长青.基于多层分割的面向对象遥感影像分类方法研究[J].遥感技术与应用,2010,25(1):149-154.]

[11]Lin Hui,Liu Pei,Xia Junshi,et al.Research on Object-oriented Multi-scale Segmentation Algorithm based on Watershed Transformation[J].Bulletin of Surveying and Mapping,2011,(10):17-19.[林卉,刘培,夏俊士,等.基于分水岭变换的遥感影像面向对象多尺度分割算法研究[J].测绘通报,2011,(10):17-19.]

[12]Robinson D J,Redding N J,Crisp D J.Implementation of a Fast Algorithm for Segmenting SAR Imagery[R].Scientific and Technical Report,2002.

[1] 路春燕,雷依凡,苏颖,黄雨菲,刘明月,贾明明. 基于面向对象—深度学习的闽东南低海拔海岸带地区湿地动态遥感分析[J]. 遥感技术与应用, 2021, 36(4): 713-727.
[2] 李晓东,闫守刚,宋开山. 遥感监测东北地区典型湖泊湿地变化的方法研究[J]. 遥感技术与应用, 2021, 36(4): 728-741.
[3] 陈康明,朱旭东. 基于Google Earth Engine的南方滨海盐沼植被时空演变特征分析[J]. 遥感技术与应用, 2021, 36(4): 751-759.
[4] 李昕娟,林家元,胡桂胜,赵伟. 西南山地典型流域地震前后泥石流物源遥感精细识别[J]. 遥感技术与应用, 2021, 36(3): 638-648.
[5] 胡乃勋,陈涛,甄娜,牛瑞卿. 基于卷积神经网络的面向对象露天采场提取[J]. 遥感技术与应用, 2021, 36(2): 265-274.
[6] 王晨丞,王永前,王利花. 基于SAR纹理信息的农作物识别研究——以农安县为例[J]. 遥感技术与应用, 2021, 36(2): 372-380.
[7] 尹燕旻,贾立. 基于Sentinel-2的闪电河流域农作物分类研究[J]. 遥感技术与应用, 2021, 36(2): 400-410.
[8] 王崇阳,田昕. 基于GF⁃1 PMS数据的森林覆盖变化检测[J]. 遥感技术与应用, 2021, 36(1): 208-216.
[9] 周怡,马佳义,黄珺. 基于互导滤波和显著性映射的红外可见光图像融合[J]. 遥感技术与应用, 2020, 35(6): 1404-1413.
[10] 符海月,钱志友,张祎婷,王昭雅,洪娜娜. 基于多尺度的南京市城市用地分布空间决定因素[J]. 遥感技术与应用, 2020, 35(5): 1079-1088.
[11] 郑琪,邸苏闯,潘兴瑶,刘洪禄,朱永华,张岑,周星. 基于Rapid Eye数据的北京生态涵养区土地利用分类及变化研究[J]. 遥感技术与应用, 2020, 35(5): 1118-1126.
[12] 牟昱璇,邬明权,牛铮,黄文江,杨尽. 南方地区复杂条件下的耕地面积遥感提取方法[J]. 遥感技术与应用, 2020, 35(5): 1127-1135.
[13] 连喜红,祁元,王宏伟,张金龙,杨瑞. 基于面向对象的青海湖环湖区居民地信息自动化提取[J]. 遥感技术与应用, 2020, 35(4): 775-785.
[14] 郝睿,李兆富,张舒昱,潘剑君,姜小三,张文敏,宋金超. 整合无人机和面向对象的农村居住环境信息提取[J]. 遥感技术与应用, 2020, 35(3): 576-586.
[15] 王芳,杨武年,王建,谢兵,任金铜. 遥感影像多尺度分割中最优尺度的选取及评价[J]. 遥感技术与应用, 2020, 35(3): 623-633.