Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (3): 511-516    DOI: 10.11873/j.issn.1004-0323.2014.3.0511
图像与数据处理     
基于遥感影像的军事阵地动态监测技术研究
许夙晖,慕晓冬,柯冰,王晓日
(第二炮兵工程大学信息工程系,陕西 西安710025)
Dynamic Monitoring of Military Position based on Remote Sensing Image
Xu Suhui,Mu Xiaodong,Ke Bing,Wang Xiaori
(The Department of Information Engineering,The Second Artillery Engineering University,Xi’an 710025,China)
 全文: PDF(21646 KB)  
摘要:

针对部队快速机动作战的军事要求,提出基于高分辨率遥感影像的军用阵地动态监测方法。借助面向对象的多尺度分割技术将阵地影像分割为同质对象,以提取各个对象的特征;针对监督分类和非监督分类的弊端,提出通过一定的先验知识制定分类规则的方法对遥感影像进行地物识别,在此基础上定性和定量地输出变化检测结果。实验结果表明:利用基于对象影像分析方法具有较高的识别精度,能够有效监测军事阵地变化。

关键词: 军事阵地面向对象多尺度变化检测    
Abstract:

According to the demands of rapid maneuvering of military forces,the method of dynamic monitoring of military position based on remote sensing image is proposed.With the help of object\|oriented multi\|scale segmentation,the image of position is segmented into homogeneous objects for extracting their features,which avoids the phenomenon of “the different bodies with the same spectrum” and “content with the different spectrums”.For the trivialness of supervised classification and the blindness of unsupervised classification,through the apriori knowledge the method on making rules for the classification is proposed to identify the objects of the remote sensing images,and on this basis the results of change detection are output qualitatively and quantitatively.The experiments results show that the objected\|oriented method has high identification precision and can effectively monitor the military position.


Key words: Military position    Object-oriented    Multi-scale    Change detection
收稿日期: 2013-05-02 出版日期: 2014-06-23
:  TP 79  
基金资助:

许夙晖(1989-),女,河南焦作人,博士研究生,主要从事军事阵地遥感图像的研究。Email:xu_suhui@163.com

通讯作者: 慕晓冬(1965-),男,山东潍坊人,博士生导师,主要从事指挥自动化方面的研究。Email:zpxhh@163.com。    
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许夙晖
慕晓冬
柯冰
王晓日

引用本文:

许夙晖,慕晓冬,柯冰,王晓日. 基于遥感影像的军事阵地动态监测技术研究[J]. 遥感技术与应用, 2014, 29(3): 511-516.

Xu Suhui,Mu Xiaodong,Ke Bing,Wang Xiaori. Dynamic Monitoring of Military Position based on Remote Sensing Image. Remote Sensing Technology and Application, 2014, 29(3): 511-516.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.3.0511        http://www.rsta.ac.cn/CN/Y2014/V29/I3/511

[1]Zhong Jiaqiang.Change Detection based on Multitemperal Remote Sensing Image[D].Changsha:National University of Defense Technology,2005.[钟家强.基于多时相遥感图像的变化检测[D].长沙:国防科技大学,2005.]

[2]Deng Xiangjin.The Remote Sensing Imagery Change Detection Using Pattern Recognition Knowledge[D].Beijing:Chinese Academy of Sciences Electronic Research Laboratory,2003.[邓湘金.基于模式识别知识的遥感图像变化检测研究[D].北京:中国科学院电子研究所,2003.]

[3]Mo Hua.A Study of the Key Technology of Military Target Change Detection on the Remote Sensing Image[D].Zhengzhou:The PLA Information Engineering University,2007.[莫华.遥感影像上军事目标变化检测相关关键技术研究[D].郑州:解放军信息工程大学,2007.]

[4]Yan Jie,Liu Jianbo,Tang Weiguang.The Damage Assessment based on Remote Sensing Image Change Detection[J].Radio Engineering,2010,40(4):30-31.[颜洁,刘建波,唐伟广.基于遥感图像变化检测的毁伤效果分析[J].无线电工程,2010,40(4):30-31.]

[5]Singh A.Digital Change Detection Techniques Using Remotely-sensed Data[J].International Journal of Remote Sensing,1989,10(6):989-1003.

[6]Li Song,An Yulun,Hua Houqiang.Automated Method based on Change Detection for Extracting Karst Rock Desertification Information Using Remote Sensing[J].Remote Sensing Technology and Application,2012,27(1):149-153.[李松,安裕伦,华厚强.基于遥感检测的石漠化信息自动提取[J].遥感技术与应用,2012,27(1):149-153.][7]Dennis C D,Steven E F,Monique G D.A Comparison of Pixel-based and Object-based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery[J].Remote Sensing of Enviromemnt,2012,118(15):259-272.

[8]Xu Jingping,Zhao Jianhua,Zhang Fengshou,et al.Objected-Oriented Information Extraction of Pond Aquaculture[J].Remote Sensing for Land and Resources,2013,25(1):82-85.[徐京平,赵建华,张丰收,等.面向对象的池塘养殖用海信息提取[J].国土资源遥感,2013,25(1):82-85.]

[9]Huo Chunlei,Cheng Jian,Lu Hanqing,et al.Object-level Ch-ange Detection based on Multiscale Fusion[J].Acta Automatica Sinica,2008,34(3):251-257.[霍春雷,程建,卢汉清等.基于多尺度融合的对象级变化检测新方法[J].自动化学报,2008,34(3):251-257.]

[10]Peng Haitao, Ke Changqing.Study on Object-oriented Remote Sensing Image Classification based on Multi-levels Segmentation[J].Remote Sensing Technology and Application,2010,25(1):149-154.[彭海涛,柯长青.基于多层分割的面向对象遥感影像分类方法研究[J].遥感技术与应用,2010,25(1):149-154.]

[11]Lin Hui,Liu Pei,Xia Junshi,et al.Research on Object-oriented Multi-scale Segmentation Algorithm based on Watershed Transformation[J].Bulletin of Surveying and Mapping,2011,(10):17-19.[林卉,刘培,夏俊士,等.基于分水岭变换的遥感影像面向对象多尺度分割算法研究[J].测绘通报,2011,(10):17-19.]

[12]Robinson D J,Redding N J,Crisp D J.Implementation of a Fast Algorithm for Segmenting SAR Imagery[R].Scientific and Technical Report,2002.

[1] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[2] 王宁,陈方,于博. 基于形态学开运算的面向对象滑坡提取方法研究[J]. 遥感技术与应用, 2018, 33(3): 520-529.
[3] 闫鹏飞,明冬萍. 尺度自适应的高分辨率遥感影像分水岭分割方法[J]. 遥感技术与应用, 2018, 33(2): 321-330.
[4] 江东,陈帅,丁方宇,付晶莹,郝蒙蒙. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1): 143-150.
[5] 何艺,周小成,黄洪宇,许雪琴. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018, 33(1): 168-176.
[6] 姜爱辉,刘国林,陈富龙. 基于PALSAR-1影像的汉函谷关遗迹变化检测研究[J]. 遥感技术与应用, 2017, 32(5): 787-793.
[7] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[8] 林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
[9] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[10] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[11] 施佩荣,陈永富,刘华,吴云华,魏新,钟泽兵. 基于改进的面向对象遥感影像分类方法研究—以西藏米林县典型林区为例[J]. 遥感技术与应用, 2017, 32(3): 466-474.
[12] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[13] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[14] 张祥,陈报章,赵慧,汪磊. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2): 338-345.
[15] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.