Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (5): 833-838    DOI: 10.11873/j.issn.1004-0323.2014.5.0833
遥感应用     
异质性地表土壤冻融循环监测网络的优化采样设计—以黑河祁连山山前地区为例
亢健1,晋锐1,2,赵少杰3,柴琳娜3
(1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州730000;
2.中国科学院寒区旱区环境与工程研究所黑河遥感试验研究站,甘肃 兰州730000;
3.北京师范大学遥感科学国家重点实验室,遥感与地理信息系统研究中心,
地理学与遥感科学学院,北京100875)
Spatial Sampling Design of the Sensor Network for Monitoring the Surface Freeze/thaw Cycles over the Heterogeneous Surface in the Heihe River Basin
Kang Jian1,Jin Rui1,2,Zhao Shaojie3,Chai Linna3
 (1.Cold and Arid Regions Environmental Engineering Research institute,
Chinese Academy of Sciences,Lanzhou 730000,China;
2.Heihe Remote Sensing Experimental Research Station,Cold and Arid Regions Environmental
and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China;
3.Beijing Normal University,Beijing 100875,China)
 全文: PDF(10718 KB)  
摘要:

在黑河祁连山山前地区建立分布式的土壤温度/水分传感器监测网络,准确获取异质性地表的遥感像元真值,用于地表冻融状态分类及土壤水分定量反演算法的发展完善和真实性检验,以及两者的降尺度研究均具有重要意义。传感器监测网络节点的空间布局直接影响观测有效性及其数据质量,一种基于异质性地表的均值估计方法被用于空间节点的优化采样设计:即以地表温度为目标变量,将研究区划分为相对均质的若干层(子区域),计算各层及总体的变异函数参数作为代价函数的输入,通过最小化目标变量的估计方差,实现传感器网络节点在各层的空间分布,准确地捕捉区域内部的异质性。结果表明,分层后各层的异质性相对于总体都有所下降,优化的节点空间布局具有较好的属性代表性,对于异质性较强的局部区域,有较高的样本密度。

关键词: 优化采样异质性地表非均质表面的均值估计地表温度    
Abstract:

A method,means of stratified non\|homogeneous surface,is used to design the sensor network in the middle reach of Heihe river basin to capture the surface freeze/thaw cycles.This method decomposes a heterogeneous surface into several subareas which are homogeneous.Its estimation variance is calculated by the kriging technique and stratified sampling.With the goal of minimizing the estimation variance,nodes of the sensor network are optimally distributed in the study area by the simulated annealing algorithm.The result shows that optimal samples have good representativeness,and high density of samples are assigned to the stronger heterogeneous regions.

Key words: Optimal Sampling    Heterogeneous surface    Means of stratified non-homogeneous surface    Sensor network
收稿日期: 2014-01-16 出版日期: 2014-11-10
:  TP 79  
基金资助:

国家自然科学基金项目“黑河流域生态—水文过程集成研究”重大研究计划,“黑河流域生态—水文过程综合遥感观测试验,定标与真实性检验”(91125004),国家863计划项目地球观测与导航技术领域“星机地综合定量遥感系统与应用示范(一期)”,“遥感产品真实性检验关键技术及其试验验证”(2012AA12A305),国家自然科学基金项目“冻土主被动微波辐射传输模拟及其辐射散射特性研究”(41071226)。

通讯作者: 晋锐(1979-),女,山西临汾人,副研究员,主要从事冻土遥感、土壤水分遥感和陆面数据同化研究。Email:jinrui@lzb.ac.cn。    
作者简介: 亢健(1984-),男,山西临汾人,博士研究生,主要从事优化采样设计、空间数据分析研究。Email:kangjian@lzb.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
亢健
晋锐
赵少杰
柴琳娜

引用本文:

亢健,晋锐,赵少杰,柴琳娜. 异质性地表土壤冻融循环监测网络的优化采样设计—以黑河祁连山山前地区为例[J]. 遥感技术与应用, 2014, 29(5): 833-838.

Kang Jian,Jin Rui,Zhao Shaojie,Chai Linna. Spatial Sampling Design of the Sensor Network for Monitoring the Surface Freeze/thaw Cycles over the Heterogeneous Surface in the Heihe River Basin. Remote Sensing Technology and Application, 2014, 29(5): 833-838.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.5.0833        http://www.rsta.ac.cn/CN/Y2014/V29/I5/833

[1]Gong Peng.Progress in Recent Environmental Applications of Wireless Sensor Networks[J].Journal of Remote Sensing,2010,14(2):387-395.[宫鹏.无线传感器网络技术环境应用进展[J].遥感学报,2010,14(2):387-395.]

[2]Hart J K,Martinez K.Environmental Sensor Networks:A Revolution in the Earth System Science?[J].Earth-Science Reviews,2006,78(3):177-191.

[3]Anderson S P,Bales R C,Duffy C J.Critical Zone Observatories:Building a Network to Advance Interdisciplinary Study of Earth Surface Processes[J].Mineralogical Magazine,2008,72(1):7-10.

[4]Kampe T U,Johnson B R,Kuester M,et al.Neon:The First Continental-scale Ecological Observatory with Airborne Remote Sensing of Vegetation CanopyBiochemistry and Structure[J].Journal of Applied Remote Sensing,2010,4(1):043510-043510-24.

[5]Zacharias S,Bogena H,Samaniego L,et al.A Network of Terrestrial Environmental Observatories in Germany[J].Vadose Zone Journal,2011,10(3):955-973.


[6]Li X,Cheng G D,Liu S,et al.Heihe Watershed Allied Telemetry Experimental Research (HiWATER):Scientific Objectives and Experimental Design[J].Bulletin of the American Meteorological Society,2013,94(8):1145-1160.

[7]Haining R.Spatial Data Analysis:Theory and Practice[M].Cambridqe:Cambridge University Press,2003.

[8]Zhou F,Guo H C,Ho Y S,et al.Scientometric Analysis of Geostatistics Using Multivariate Methods[J].Scientometrics,2007,73(3):265-279.

[9]Van Groenigen J,Stein A.Constrained Optimization of Spatial Sampling Using Continuous Simulated Annealing[J].Journal of Environmental Quality,1998,27(5):1078-1086.

[10]Brus D J,Heuvelink G B M.Optimization of Sample Patterns for Universal Kriging of Environmental Variables[J].Geoderma,2007,138(1-2):86-95.

[11]Hengl T,Rossiter D G,Stein A.Soil Sampling Strategies for Spatial Prediction by Correlation with Auxiliary Maps[J].Soil Research,2004,41(8):1403-1422.

[12]Ge Yong,Wang Jianghao,Wang Jinfeng,et al.Regression Kriging Model-based Sampling Optimization Design for the Eco-hydrology Wireless Sensor Network[J].Advances in Earth Science,2012,27(9):1006-1013.[葛咏,王江浩,王劲峰,等.基于回归克里格的生态水文无线传感器网络布局优化[J].地球科学进展,2012,27(9):1006-1013.]

[13]Ge Y,Wang J,Heuvelink G B M,et al.Sampling Design Optimization of a Wireless Sensor Network for Monitoring Ecohydrological Processes in the BabaoRiver Basin,China[J].International Journal of Geographical Information Science,2014(ahead-of-print):1-19.

[14]Wang J F,Christakos G,Hu M G.Modeling Spatial Means of Surfaces with Stratified Nonhomogeneity[J].IEEE Transactions on Geoscience and RemoteSensing,2009,47(12):4167-4174.

[15]Hu M G,Wang J F.A Spatial Sampling Optimization Package Using Msn Theory[J].Environmental Modelling & Software,2011,26(4):546-548.

[16]Van Groenigen J W.Spatial Simulated Annealing for Optimizing Sampling[J].GeoENVI:Geostatistics for Environmental Applications,1997,9:351-361.

[17]Li H,Reynolds J.On Definition and Quantification of Heterogeneity[J].Oikos,1995,73(2):280-284.

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 李军,龚围,辛晓洲,高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[5] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[6] 史新,周买春. 基于Landsat 8数据的3种地表温度反演算法在三河坝流域的对比分析[J]. 遥感技术与应用, 2018, 33(3): 465-475.
[7] 郑明亮,黄方,张鸽. 基于TsHARP模型和STITFM算法的地表温度影像融合研究[J]. 遥感技术与应用, 2018, 33(2): 275-283.
[8] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[9] 李艳,侯金亮,黄春林. 基于Copula函数的地表温度空间降尺度研究[J]. 遥感技术与应用, 2017, 32(5): 818-824.
[10] 郑飞,张殿发,孙伟伟,杨刚. 基于ASTER遥感的杭州城市热/冷岛的景观特征分析[J]. 遥感技术与应用, 2017, 32(5): 938-947.
[11] 李小龙,杨英宝,曹利娟,章勇. 基于遥感和CFD模拟的城市绿地形态对热环境的影响研究[J]. 遥感技术与应用, 2016, 31(6): 1150-1157.
[12] 臧琳,宋冬梅,单新建,崔建勇,邵红梅,沈晨,时洪涛,宋先月. 基于被动微波与时空联合算法的云下像元LST重建[J]. 遥感技术与应用, 2016, 31(4): 764-772.
[13] 赵伟,李爱农,张正健,边金虎,靳华安,尹高飞,南希,雷光斌. 基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J]. 遥感技术与应用, 2016, 31(1): 63-73.
[14] 杨成松,车涛,欧阳斌. 青藏高原地表温度时空变化分析[J]. 遥感技术与应用, 2016, 31(1): 95-101.
[15] 龚绍琦,张茜茹,王少峰,周寅,张世乔,国文哲. 地表温度遥感中大气平均作用温度估算模型研究[J]. 遥感技术与应用, 2015, 30(6): 1113-1121.