Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (6): 954-962    DOI: 10.11873/j.issn.1004-0323.2014.6.0954
遥感应用     
卫星遥感西藏高原积雪时空变化及影响因子分析
白淑英1,2,史建桥1,3,沈渭寿2,高吉喜2,张学成3
(1.南京信息工程大学遥感学院,江苏 南京210044;
2.环境保护部南京环境科学研究所,江苏 南京210042;3.94783部队61分队,浙江 长兴313111)
Spatial and Temporal Variations of Snow and Influencing Factors in Tibet Plateau based on Remote Sensing
Bai Shuying1,2,Shi Jianqiao1,3,Shen Weishou2,Gao Jixi2,Zhang Xuecheng3
(1.College of Remote Sensing,Nanjing University of Information
Science & Technology,Nanjing 210044,China;
2.Environmental Protection Department of Nanjing Institute of
Environmental Science,Nanjing 210042,China;
3.Unit 61,No.94783 of PLA,Changxing 313111,China)
 全文: PDF(5578 KB)  
摘要:

积雪是气候变化的指示器,其变化对地球能量和辐射平衡以及水分循环产生深刻的影响。研究积雪与气候变化的关系是气候变化区域响应的最好实证。利用2000年3月~2011年2月共11 a的MODIS雪盖产品数据、1979~2010年逐日雪深被动微波遥感数据、DEM数据以及地面气象观测数据,通过GIS空间分析及地统计分析功能,系统分析西藏高原雪深、雪盖和雪线的时空变化规律及其对气候变化的响应关系。研究表明:研究区雪深的分布形成了四周山地积雪深度大,中部腹地雪深小的空间格局。1979~1999年平均雪深呈极显著增加趋势,线性倾向率为0.26 cm/10a,1999~2010年则呈下降趋势。逐像元回归分析结果显示,研究区年积雪深度呈增加趋势的像元数占全区像元总数的76.9%,有减少趋势的仅占23.1%;雪盖面积变化总体呈缓慢波动减少趋势,线性倾向率为-3.89万km2/10a;7、8月在中东部念青唐古拉山、南部喜马拉雅山、冈底斯山和昆仑山等山脉一带以及高原腹地局部地区仍存在大面积常年积雪;雪线年平均呈微弱上升趋势,线性倾向率为6.54 m/10a,各季节平均雪线中,秋季雪线的变化对年平均贡献最大;雪线空间分布呈现从东南向西北逐步升高的态势。积雪参数与气候因素的相关分析表明,雪深春秋季主要受风速和日照时数影响,夏冬季则分别是降水量和风速;气温是影响四季积雪覆盖面积的主导因素,春秋季雪线与气温分别呈正相关和负相关。

关键词: 西藏高原积雪时空变化气候因子遥感    
Abstract:

Snow is an indicator of climate change,and its changes have a profound effect on the energy and radiation balance and water cycle.Thus,it is the best demonstration of regional response to study the relationship between snow and climate change.Temporal and spatial variation of snow depth,snow cover and snow line of Tibet Plateau and its response to climate change were examined using geostatistics and spatial analysis of GIS function based on MODIS snow cover from March 2000 to February 2011,snow depth daily data (passive microwave remote sensing) during 1979~2010,DEM and surface meteorological data.The results showed that the snow depth varied with regions and displayed high in the periphery and low in the middle of the study area.The mean snow depth increased significantly with a linear trend rate of 0.26 cm/10a during the period of 1979~1999 and decreased between 1999 and 2010.The regression analysis indicated that the number of pixels with increasing mean annual snow depth,accounted for 76.9% of the total pixels in the study area,while only 23.1% for the opposite.The snow coverage generally decreasd between 2001 and 2010 with a linear trend rate of -38 900 km2/10a in the Tibet Plateau.Large areas were still covered by snow all the year around in the Nyenchen Tanglha,the Himalayas,the Gangdise and Kunlun mountains,and parts of Plateau hinterland.The mean annual snow line tended to ascend slightly with a linear trend rate of 6.54 m/10a in Tibet Plateau.The mean snow line variation in autumn contributed to the mean annual one mostly.The value of snow line in Tibet Plateau increased slowly from the southeast to the northwest.The correlation analysis between snow parameters and climate factors indicated that the snow depth was mainly impacted by wind speed and sunshine hours in spring and autumn,precipitation in summer and wind speed in winter.Temperature is the main factor influencing on snow coverage for every season.In four seasons,temperature had more significant effect on snow cover than other factors.However,in spring and autumn,the snow line was positively and negatively related to temperature in spring and autumn respectively.

Key words: Tibet Plateau    Snow    Spatial-temporal variation    Climate factors    Remote sensing
收稿日期: 2013-09-01 出版日期: 2015-01-15
:  TP79  
基金资助:

国家环保公益性行业科研专项项目“青藏高原生态退化及环境管理研究”(200909050)。

作者简介: 白淑英(1973-),女,内蒙古宁城人,博士,副教授,主要从事遥感与GIS在资源环境中的应用研究。Email:baishu\|ying@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
白淑英
史建桥
沈渭寿
高吉喜
张学成

引用本文:

白淑英,史建桥,沈渭寿,高吉喜,张学成. 卫星遥感西藏高原积雪时空变化及影响因子分析[J]. 遥感技术与应用, 2014, 29(6): 954-962.

Bai Shuying,Shi Jianqiao,Shen Weishou,Gao Jixi,Zhang Xuecheng. Spatial and Temporal Variations of Snow and Influencing Factors in Tibet Plateau based on Remote Sensing. Remote Sensing Technology and Application, 2014, 29(6): 954-962.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.6.0954        http://www.rsta.ac.cn/CN/Y2014/V29/I6/954

[1]Bai Shuying,Wang Li,Zhao Qiaohua,et al.Influence Factors of Snow Change in Lake Bosten Basin[J].Journal of Lake Sciences,2012,24(3):487-493.[白淑英,王莉,赵巧华,等.博斯腾湖流域积雪变化及影响因素[J].湖泊科学,2012,24(3):487-493.]

[2]Li Peiji.Variation of Snow Water Resources in Northwest China during 1951-1997[J].Science in China(Series D),1999,29(S1):163-169.[李培基.1951-1997年中国西北地区积雪水资源的变化[J].中国科学(D辑),1999,29(S1):163-169.]

[3]Zhu Yuxiang,Ding Yihui.Influences of Snow Cover over Tibetan Plateau on Weather and Climate:Advances and Problems[J].Meteorological Science and Technology,2007,35(1):1-8.[朱玉祥,丁一汇.青藏高原积雪对气候影响的研究进展和问题[J].气象科技,2007,35(1):1-8.]

[4]Ding Feng,Sun Zhaobo,Liu Jingle.Correlations of Snow Depth over the Tibetan Plateau in Winter and Spring with Precipitation in Summer over China[J].Transactions of Atmospheric Sciences,2009,32(6):783-791.[丁锋,孙照渤,刘敬乐.青藏高原冬春雪深分布与中国夏季降水的关系[J].大气科学学报,2009,32(6):783-791.]

[5]Guo Jibing,Xu Xiangde,Shi Xiaohui,et al.Characteristics of Winter Apparent Heat Source in the Key Area of Snow Cover on Qinghai-Xizang Plateau and Spring Drought in Southwest China[J].Plateau Meteorology,2012,31(4):900-909.[过霁冰,徐祥德,施晓晖,等.青藏高原冬季积雪关键区视热源特征与中国西南春旱的联系[J].高原气象,2012,31(4):900-909.]

[6]Li Lin,Chen Xiaoguang,Wang Zhenyu,et al.Climate Change and Its Regional Differences over the Tibetan Plateau[J].Advances in Climate Change Research,2010,6(3):181-186.[李林,陈晓光,王振宇,等.青藏高原区域气候变化及其差异性研究[J].气候变化研究进展,2010,6(3):181-186.]

[7]Li Xiaolan,Zhang Feimin,Wang Chenghai.Comparison and Analysis of Snow Depth over China,Observed and Derived from Remote Sensing[J].Journal of Glaciology,2012,34(4):755-764.[李小兰,张飞民,王澄海.中国地区地面观测积雪深度和遥感雪深资料的对比分析[J].冰川冻土,2012,34(4):755-764.][8]Che Tao,Li Xin,Gao Feng.Estimation of Snow Water Equivalent in the Tibetan Plateau Using Passive Microwave Remote Sensing Data (SSM/I)[J].Journal of Glaciology,2004,26(3):363-368.[车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368.]

[9]Zhang Jiahua,Wu Yang,Yao Fengmei.Study on the Snow Distribution and Influencing Factors in Northern Tibet based on Remote Sensing Information[J].Chinese Journal of Geophysics,2008,51(4):1013-1021.[张佳华,吴杨,姚凤梅.卫星遥感藏北积雪分布及影响因子分析[J].地球物理学报,2008,51(4):1013-1021.


[10]Liu Junfeng,Chen Rensheng.Studying the MODIS Snow Covered Days by the Use of MODIS Aqua/Terra Snow Cover Products and In-situ Observations in North Eastern and Inner Mongolia Region[J].Remote Sensing Technology and Application,2011,26(4):450-456.[刘俊峰,陈仁升.东北—内蒙古地区基于MODIS单、双卫星积雪数据及常规积雪观测结合的积雪日数研究[J].遥感技术与应用,2011,26(4):450-456.]

[11]Hou Huishu,Yang Hongye.A General Introdction to MODIS Snow Products and Its Researching Application[J].Remote Sensing Technology and Application,2009,24(2):252-256.[侯慧姝,杨宏业.MODIS积雪产品及研究应用概述[J].遥感技术与应用,2009,24(2):252-256.]

[12]Zhang Wenbo,Xiao Pengfeng,Feng Xuezhi.A Study on Snow Cover Variability Using MODIS in the Typical Area of Tianshan Moutains,China[J].Remote Sensing Technology and Application,2012,27(5):746-753.[张文博,肖鹏峰,冯学智.基于MODIS数据的我国天山典型区积雪特征研究[J].遥感技术与应用,2012,27(5):746-753.]

[13]Che T,Li X,Jin R,et al.Snow Depth Derived from Passive Microwave Remote Sensing Data in China[J].Annual of Glaciology,2008,49(1):145-154.

[14]Li Guanghui,Xi Xiaohuan,Yue Cairong,et al.Monitoring Variation of Snow Cover Areas in Glaciated Region based on Data of HJ-1A/1B Satellite and Its Relationship with the Air Temperature Response[J].Journal of Glaciology,2013,35(3):630-635.[李光辉,习晓环,岳彩荣,等.基于环境小卫星数据的冰川区积雪面积变化及其与温度响应关系研究[J].冰川冻土,2013,35(3):630-635.]

[15]Du Jiankuo,Xin Huijuan,He Yuanqing,et al.Response of Modern Monsoon Temperate Glacier to Climate Change in Yulong Mountain[J].Scientia Geographica Sinica,2013,33(7):890-896.[杜建括,辛惠娟,何元庆,等.玉龙雪山现代季风温冰川对气候变化的响应[J].地理科学,2013,33(7):890-896.]

[16]Wang Yetang,He Yong,Hou Shugui.Analysis of the Temporal and Spatial Variations of Snow Cover over the Tibetan Plateau based on MODIS[J].Journal of Glaciology,2007,29(6):855-861.[王叶堂,何勇,侯书贵.2000-2005年青藏高原积雪时空变化分析[J].冰川冻土,2007,29(6):855-861.]

[17]Ke Changqing,Li Peiji.Spatial and Temporal Characteristics of Snow Cover over the Qinghai-Xizang Plateau[J].Acta Geographica Sinica,1998,53(3):209-215.[柯长青,李培基.青藏高原积雪分布与变化特征[J].地理学报,1998,53(3):209-215.]

[18]Kotyakov V M.World Atlas of Snow and Ice Resources[M].Moscow:Russian Academy of Sciences,1997.

[19]He Liye.Study on the Classification of Snow Cover and Influencing Factors in West China[D].Nanjing:Nanjing University of Information Science and Technology,2011.[何丽烨.中国西部积雪类型划分及影响因子分析[D].南京:南京信息工程大学,2011.]

[20]Lin Jintang,Feng Xuezhi,Xiao Pengfeng,et al.Spatial and Temporal Distribution of Snow Cover in Mountains Area of Manasi River Basin based on MODIS[J].Remote Sensing Technology and Application,2011,26(4):469-475.[林金堂,冯学智,肖鹏峰,等.基于MODIS数据的玛纳斯河山区雪盖时空分布分析[J].遥感技术与应用,2011,26(4):469-475.]

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[5] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[6] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[7] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[8] 刘畅,李震,张平,田帮森,周建民. 基于Google Earth Engine评估新疆西南部MODIS积雪产品[J]. 遥感技术与应用, 2018, 33(4): 584-592.
[9] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[10] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[11] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[12] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[13] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[14] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[15] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.