Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (1): 99-105    DOI: 10.11873/j.issn.1004-0323.2015.1.0099
图像与数据处理     
基于面向对象的高分影像分类研究
宋晓阳1,姜小三1,江东2,黄耀欢2,万华伟3,王昌佐3
(1.南京农业大学资源与环境科学学院,江苏 南京210095;
2.中国科学院地理科学与资源研究所资源利用与环境修复重点实验室,北京100101;
3.环境保护部卫星环境应用中心,北京100094)
Object-oriented Classification of High-resolution Remote Sensing Image
Song Xiaoyang1,Jiang Xiaosan1,Jiang Dong2,Huang Yaohuang2,Wan Huawei3,Wang Changzuo3
(1.Resources & Environment Science Department,Nanjing Agricultural University,Nanjing 210095,China;
2.State Key Lab of Natural Resources and Environmental Security,Institute of Geographic Sciences and
Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;
3.Satellite Environment Center,Ministry of Environmental Protection,Beijing 100094,China)
 全文: PDF(4263 KB)  
摘要:

遥感技术已经成为实现地表信息提取的主要手段。以高分辨率影像为主要数据源,采用面向对象的多尺度分割算法,根据对象的光谱、形状等特征,实现了面向高分遥感数据的土地利用分类算法。该算法结合了面向地物对象和综合对象特征的分类方法,充分发挥了高分辨率影像进行精细地物分类的优势,得到了高精度的分类结果。通过西双版纳纳板河流域国家级自然保护区实例验证表明:该算法总体精度达到88.58%,Kappa系数达到0.77,精度符合应用要求,能够实现土地利用高精度、快速的分类。

关键词: 面向对象多尺度分割土地利用分类高分辨影像    
Abstract:

Remote sensing technology has become the main means to achieve the extraction of ground information.Based on high\|resolution remote sensing image,this paper adopted multi\|scale segmentation algorithm and measured the characters of object spectrum and shape to realize the object\|oriented classification method.The classification method was a combination of object\|oriented method and comprehensively analyzes the features of objects,give full paly to the advantage of the fine features classification of high\|resolution remote sensing image,so that high precision classification results were obtained.The method was tested in Nabanhe River Watershed Nature Reserve,Xishuangbanna,then the method was checked by the total accuracy of classification result reached to 88.58% and Kappa coefficient was 0.77.The method was a high\|precision and rapid classification method.

Key words: Object-oriented    Multi-scale segmentation    Land use classification    High-resolution Remote Sensing image
收稿日期: 2013-12-23 出版日期: 2015-03-11
:  TP 75  
基金资助:

国家自然科学青年基金项目(51309210),高分重大科技专项“环境保护遥感动态监测信息服务系统”,“高分生态环境遥感监测关键技术研究、系统开发与应用示范”(05-Y30B02-9001-13/15-10),中国科学院地理资源所自主部署创新项目(2012SJ008-01)。

 

通讯作者: 姜小三(1967-),男,江苏泰州人,教授,主要从事资源环境信息系统方面的研究。Email:gis@njau.edu.cn。    
作者简介: 宋晓阳(1988-),女,河北邢台人,硕士研究生,主要从事资源环境信息系统方面的研究。Email:2011103097@njau.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宋晓阳
姜小三
江东
黄耀欢
万华伟
王昌佐

引用本文:

宋晓阳,姜小三,江东,黄耀欢,万华伟,王昌佐. 基于面向对象的高分影像分类研究[J]. 遥感技术与应用, 2015, 30(1): 99-105.

链接本文:

http://www.rsta.ac.cn/CN/Y2015/V30/I1/99

[1]Baatz M,Schpe A.Multiresolution Segmentation:An Optimization Approach for High Quality Multi-scale Image Segmentation[J].Angewandte Geographische Informationsverarbeitung,2000,12(12):12-23.

[2]Kim J B,Kim H J.Multiresolution-based Watersheds for Efficient Image Segmentation[J].Pattern Recognition Letters,2003,24(1):473-488.

[3]Trias-Sanz R,Stamon G,Louchet J.Using Colour,Texture,and Hierarchial Segmentation for High-resolution Remote Sensing[J].ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(2):156-168.

[4]Kurtz C,Passat N,Ganarski P,et al.Extractionof Complex Patterns from Multi-resolution Remote Sensing Images:A Hierarchical Top-down Methodology[J].Pattern Recognition,2012,45(2):685-706.

[5]Whiteside T G,Boggs G S,Maier S W.Comparing Object-based and Pixel-based Classifications for Mapping Savannas[J].International Journal of Applied Earth Observation and Geoinformation,2011,13(6):884-893.

[6]Ge Chunqing,Zhang Linghan,Yang Jie.Object-Oriented Classification of Remote Sensing Image based on Decision Trees[J].Remote Sensing Information,2009,(2):86-90.[葛春青,张凌寒,杨杰.基于决策树规则的面向对象遥感影像分类[J].遥感信息,2009,(2):86-90.]

[7]Yu Qipeng,Zhang Xiaoxiang,Mei Dandan,et al.High-resolution Remote Sensing Classification Aided by the Auxiliary Data in High-density Urban Area[J].Remote Sensing Technology and Application,2014,29(2):344-351.[余其鹏,张晓祥,梅丹丹,等.结合地籍数据的高密度城区面向对象遥感分类[J].遥感技术与应用,2014,29(2):344-351.]

[8]Hofmann P.Detecting Informal Settlements from IKONOS Image Data Using Methods of Object Oriented Image Analysis-An Example from Cape Town (South Africa)[C]//Jürgens,C.(Ed.):Remote Sensing of Urban Areas/Fernerkundung in Urbanen R〖AKa¨D〗umen,2001.

[9]Huang Huiping,Wu Bingfang,Li Miaomiao,et al.Detecting Urban Vegetation Efficiently with High Resolution Remote Sensing Data[J].Journal of Remote Sensing,2004,8(1):68-74.[黄慧萍,吴炳方,李苗苗,等.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004,8(1):68-74.]

[10]Guo Jiancong,Li Peijun,Xiao Xiaobai.A Hierarchical Segmentation Methodfor Multispectral Imagery[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2009,45(2):306-310.[郭建聪,李培军,肖晓柏.一种高分辨率多光谱图像的多尺度分割方法[J].北京大学学报·自然科学版,2009,45(2):306-310.]

[11]Cai Huajie,Tian Jinwen.Multi-scale Image Segmentation of 〖HJ1.75mm〗High Spatial Resolution Remote Sensing Image based on Mean-shift Procedure[J].Journal of Wuhan University of Technology,2009,31(11):97-100.[蔡华杰,田金文.一种高分辩遥感影像多尺度分割新算法[J].武汉理工大学学报,2009,31(11):97-100.]

[12]Huang Jin.Object-oriented Classification Technique of Remote Sensing Image Used in Classification of Land Use [D].Chendu:Chengdu University of Technology,2010.[黄瑾.面向对象遥感影像分类方法在土地利用信息提取中的应用研究[D].成都:成都理工大学,2010.]

[13]Sun Xiaoxia,Zhang Jixian,Liu Zhengjun.Extracting the River and the Road Using an Object Oriented Technique from IKONOS Panchromatic Imagery[J].Science of Surveying and Mapping,2006,31(1):62-63.[孙晓霞,张继贤,刘正军.利用面向对象的分类方法从 IKONOS 全色影像中提取河流和道路[J].测绘科学,2006,31(1):62-63.]

[14]Wang Xinjun,Wu Hongqi,Sheng Jiandong,et al.Object-oriented Farmland Extraction from High Spatial Resolution Imagery[J].Xinjiang Agricultural Sciences,2012,49(2):371-378.[王新军,武红旗,盛建东,等.面向对象的高分辨率影像耕地信息提取[J].新疆农业科学,2012,49(2):371-378.]

[15]Benz U C,Hofmann P,Willhauck G,et al.Multi-resolution,Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004,58(3):239-258.

[16]Walker J,Blaschke T.Object-based Land-cover Classification for the Phoenix Metropolitan Area:Optimization Vs.Transportability[J].International Journal of Remote Sensing,2008,29(7):2021-2040.

[17]Mathieu R,Aryal J.Object-oriented Classification and Ikonos Multispectral Imagery for Mapping Vegetation Communities in Urban Areas[C]//17th Annual Colloquium of the Spatial Information Research Centre,Dunedin,New Zealand,2005.

[18]Tian J,Chen D M.Optimizationin Multi-scale Segmentation of High-resolution Satellite Images for Artificial Feature Recognition[J].International Journal of Remote Sensing,2007,28(20):4625-4644.

[19]Trimble Germany Gmb h.eCognition User Guide[EB/OL]//www.eCognition.com/support,2011.

[20]Yi Bangjin.Application Study in the Classification of Land Use base on the Technology of Object-oriented[D].Kunming:Yunnan Normal University,2009.[易邦进.面向对象技术在土地利用分类中的应用研究[D].昆明:云南师范大学,2009.]

[21]Zhou Yanping,Wang Ping,Zhang Zhenyong,et al.Classification of Urban Land based on Object-oriented Information Extraction Technology[J].Remote Sensing Technology and Application,2008,23(1):31-35.[周春艳,王萍,张振勇,等.基于面向对象信息提取技术的城市用地分类[J].遥感技术与应用,2008,23(1):31-35.]

[22]Allouche O,Tsoar A,Kadmon R.Assessing the Accuracy of Species Distribution Models:Prevalence,Kappa and the True Skill Statistic (TSS)[J].Journal of Applied Ecology,2006,43(6):1223-1232.

[23]Foody G M.Map Comparison in GIS[J].Progress in Physical Geography,2007,31(4):439-445.

[24]Blackman N J M,Koval J J.Interval Estimation for Cohens Kappa as a Measure of Agreement[J].Statistics in Medicine,2000,19(5):723-741.


 

[1] 王宁,陈方,于博. 基于形态学开运算的面向对象滑坡提取方法研究[J]. 遥感技术与应用, 2018, 33(3): 520-529.
[2] 闫鹏飞,明冬萍. 尺度自适应的高分辨率遥感影像分水岭分割方法[J]. 遥感技术与应用, 2018, 33(2): 321-330.
[3] 江东,陈帅,丁方宇,付晶莹,郝蒙蒙. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1): 143-150.
[4] 何艺,周小成,黄洪宇,许雪琴. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018, 33(1): 168-176.
[5] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[6] 林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
[7] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[8] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[9] 施佩荣,陈永富,刘华,吴云华,魏新,钟泽兵. 基于改进的面向对象遥感影像分类方法研究—以西藏米林县典型林区为例[J]. 遥感技术与应用, 2017, 32(3): 466-474.
[10] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[11] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[12] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[13] 邓滢,张红,王超,刘萌. 结合纹理与极化分解的面向对象极化SAR水体提取方法[J]. 遥感技术与应用, 2016, 31(4): 714-723.
[14] 王娟,廖静娟,沈国状,许涛. 基于面向对象技术的鄱阳湖湿地地物分类研究[J]. 遥感技术与应用, 2016, 31(3): 543-550.
[15] 王嘉芃,刘婷,俞志强,胡潭高,张登荣,寻丹丹,王冬海. 基于COSMOGSkyMed和SPOTG5的城镇洪水淹没信息快速提取研究[J]. 遥感技术与应用, 2016, 31(3): 564-571.