Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (2): 331-336    DOI: 10.11873/j.issn.1004-0323.2015.2.0331
图像与数据处理     
MOD09A1数据产品中缺失条带的插补方法
张鹏,刘勇
(兰州大学资源环境学院,甘肃 兰州730000)
An Interpolation Method for Stripe Missing in the Product MOD09A1
Zhang Peng,Liu Yong
(College of Earth and Enviromental Sciences,Lanzhou University,Lanzhou 730000,China)
 全文: PDF(7058 KB)  
摘要:

MODIS地表反射率产品(MOD09A1)是MODIS系列化数据产品中一项重要而基础性的产品。在实际应用中发现该数据产品中仍然继承了原始数据固有的条带缺失问题,且随着数据投影转换,缺失数据在表现为条带状的同时,表现出新的分布特点,以往的插补方法不再适用。利用MOD09A1数据集中描述MODIS数据获取和处理质量的QC数据逐一确定单个缺失像元的准确位置,采用其8邻域内的非缺失像元均值对缺失像元进行插补,在对非条带信息不产生影响的前提下实现了MOD09A1缺失条带的去除,从而确保了该产品数据的质量。选用不同年份不同天数的3景数据进行处理,并将模拟的条带缺失数据采用本文方法处理的结果与真实数据比较,以及将同一条带缺失数据采用不同方法处理的结果比较,结果显示本文方法对于MOD09A1数据条带去除优于以往的方法,并具有普适性和可靠性。

关键词: MODISMOD09A1条带缺失QC地表反射率插值    
Abstract:

MODIS surface reflectance product (MOD09A1) is an important and basic product among series data products of MODIS.However ,it is found that the data still carry on the problem of stripe missing from original data in practical applications.With projection transformation ,the missing data shows new patterns expect the stripe in original data,and the commonly used methodologies is no longer applicable to eliminate the stripe.This paper used QC data that describes the MODIS data acquisition and processing quality within MOD09A1 datasets to locate missing strip,and use smoothing algorithm with the correct pixels in eight neighborhood for interpolation.The data randomly selected to acquire at different times which is processed with the mehod presented in this paper,and all results are good that demonstrates the universality of the method. Different methods used previously and presented in this paper where are used with the same data,and the reswts demonstrate the latter is better.The de\|strping data generated from simulated stripe missing data with the method in this paper is campared with the ture data,and the difference between the two is very small.The result shows that the method for removal of strip missing is effective,and information of non\|stripe missing pixels is not effected.

Key words: MODIS    MOD09A1    Strip missing    QC    Surface reflectance    Interpolation
收稿日期: 2013-09-26 出版日期: 2015-05-08
:  TP 75  
基金资助:

国家自然科学基金项目(41271360)。

通讯作者: 刘勇(1964-),男,甘肃清水人,教授,博士生导师,主要从事遥感与地理信息系统研究。Email:liuy@lzu.edu.cn。    
作者简介: 张鹏(1987-),男,河北隆尧人,硕士研究生,主要从事遥感数据产品质量控制研究。Email:zp11@lzu.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张鹏
刘勇

引用本文:

张鹏,刘勇. MOD09A1数据产品中缺失条带的插补方法[J]. 遥感技术与应用, 2015, 30(2): 331-336.

Zhang Peng,Liu Yong . An Interpolation Method for Stripe Missing in the Product MOD09A1. Remote Sensing Technology and Application, 2015, 30(2): 331-336.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.2.0331        http://www.rsta.ac.cn/CN/Y2015/V30/I2/331

[1]Savtchenko A,Ouzounov D,Ahmad S,et al.Terra and Aqua MODIS Products Available from NASA GES DAAC[J].Advances in Space Research,2004,34(4):710-714.[2]Montesano T,Lanorte A,De Santis F,et al.Pre and Post Fire Vegetation Behavioral Trends from Satellite MODIS/NDVI Time Series in Semi-natural Areas[J].Lecture Notes in Computer Science,2011,6783:330-343.

[3]Yang Zhongdong,Zhang Wenjian,Li Jun,et al.De-striping for MODIS Infared Band Data via Wavelet Shrinkage[J].Journal of Remote Sensing,2004,8(1):23-30.[杨忠东,张文建,李俊,等.应用小波收缩方法剔除MODIS热红外波段数据条带噪声[J].遥感学报,2004,8(1):23-30.]

[4]Rakwatin P,Takeuchi W,Yasuoka Y,et al.Stripe Noise Reduction in MODIS Data by Combining Histogram Matching with Facet Filter[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(6):1844-1856.

[5]Chen Jinsong,Shao Yun,Zhu Boqin.Destriping MODIS ba-sed on FIR Method[J].Journal of Remote Sensing,2004,8(3):227-233.[陈劲松,邵芸,朱博勤.中分辨率遥感图像条带噪声的去除[J].遥感学报,2004,8(3):227-233.]

[6]Yang Jinhong,Gu Songshan,Cheng Minghu.Application of Interpolation Method in Destriping MODIS Images[J].Scientia Meteorologica Sinica,2007,27(6):604-609.[杨金红,顾松山,程明虎.插值法在去除MODIS遥感影像条带噪声中的应用[J].气象科学,2007,27(6):604-609.]

[7]Jiang Gengming,Niu Zheng,Ruan Weili,et al.A Study on Removing the Stripe Noises in MODIS 1B Images[J].Remote Sensing Technology and Application,2003,18(6):393-398.[蒋耿明,牛铮,阮伟利,等.MODIS影像条带噪声去除方法研究[J].遥感技术与应用,2003,18(6):393-398.]

[8]Chen J S,Shao Y,Guo H D,et al.Destriping MODIS Data by Power Filtering[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):2119-2124.[9]Simpson J J,Stitt J R,Leath D M.Improved Finite Impulse Response Filters for Enhanced Destriping of Geostationary Satellite Data[J].Remote Sensing of Environment,1998,66(3):235-249.

[10]Huang Xiaoyuan,Zhou Ruliang,Luo Hui.Method for Removing the Stripe Noises with Neighboring-region Interpolation Algorithm in MODIS Images[J].Geospatial Information,2008,6(1):101-103.[黄晓园,周汝良,罗辉.MODIS影像条带噪声去除邻域插值法研究[J].地理空间信息,2008,6(1):101-103.]

[11]Wu Jun,Zhang Wanchang.Destriping MODIS Images with Self-correlation Interpolation Algorithm[J].Remote Sensing Technology and Application,2006,21(3):253-258.[吴军,张万昌.MODIS影像条带噪声去除的自相关插值法[J].遥感技术与应用,2006,21(3):253-258.]

[12]Chen Jinsong,Zhu Boqin,Shao Yun.Destriping Multi-sensor Imagery based on Wavelet Transform[J].Remote Sensing Information,2003,2:6-9.[陈劲松,朱博勤,邵芸.基于小波变换的多波段遥感图像条带噪声的去除[J].遥感信息,2003,2:6-9.]

[13]Vermote E F,Kotchenova S Y.MOD09(Surface Reflectance) User’s Guide[EB/OL].〖JP3〗http://modis-sr.ltdri.org,2008.3,2013.7.

[14]Jiang Yazhen,Zhang Yujie,Sun Chen,et al.Study on the Application of TVDI in Soil Moisture Monitoring in Hebei Province for Dry-Hot Wind Disaster Warming[J].Remote Sensing Technology and Application,2014,29(3):442-450.[姜亚珍,张瑜洁,孙琛,等.基于TVDI河北省干热风同期土壤湿度监测研究[J].遥感技术与应用,2014,29(3):442-450.]

[15]USGS Earth Resources Observation and Science (EROS) Center.MODIS Reprojection Tool User’s Manual[EB/OL].https://lpda-ac.usgs.gov/tools/modis_reprojection_tool,2011.4,2013.7.

[1] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[2] 冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[3] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[4] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[5] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
[6] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[7] 黎微微,胡斯勒图,陈洪滨,尚华哲. 利用MODIS资料计算不同云天条件下的地表太阳辐射[J]. 遥感技术与应用, 2017, 32(4): 643-650.
[8] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[9] 许青云,顾伟伟,谢涛,刘锐. 秸秆焚烧火点遥感监测算法实现[J]. 遥感技术与应用, 2017, 32(4): 728-733.
[10] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[11] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.
[12] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.
[13] 于小淇,邱玉宝,阮永俭,石利娟,拉巴卓玛. 高亚洲地区无云积雪遥感二值产品对比和精度验证分析[J]. 遥感技术与应用, 2017, 32(1): 37-48.
[14] 邵东航,李弘毅,王建,郝晓华,王润科,马媛. 基于多源遥感数据的积雪反照率反演研究[J]. 遥感技术与应用, 2017, 32(1): 71-77.
[15] 李洛晞,沈润平,李鑫慧,郭佳. 基于MODIS时间序列森林扰动监测指数比较研究[J]. 遥感技术与应用, 2016, 31(6): 1083-1090.