Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (3): 424-430    DOI: 10.11873/j.issn.1004-0323.2015.3.0424
模型与反演     
基于多角度微波辐射亮温数据反演冬小麦光学厚度
王琦1,2,3,柴琳娜1,2,3,赵少杰1,2,3,张涛1,2,3
(1.北京师范大学遥感科学国家重点实验室,北京 100875;
2.北京师范大学遥感与地理信息系统研究中心,北京 100875;
3.北京师范大学地理学与遥感科学学院,北京 100875)
Inversion of Winter Wheat Optical Depth based on Multi-angular Microwave Brightness Temperature
Wang Qi1,2,3,Chai Linna1,2,3,Zhao Shaojie1,2,3,Zhang Tao1,2,3
(1.State Key Laboratory of Remote Sensing Science,Beijing Normal University,Beijing 100875,China;
2.Research Center for Remote Sensing and GIS,Beijing Normal University,Beijing 100875,China;
3.School of Geography and Remote Sensing,Beijing Normal University,Beijing 100875,China)
 全文: PDF(3127 KB)  
摘要:

基于高级积分方程模型(Advanced Integrated Emission Model,AIEM),构建了包含宽范围土壤参数的C波段(6.925 GHz)多角度裸露土壤发射率模拟数据库,利用该模拟数据分析了不同观测角度的裸露土壤发射率极化差之间的关系。在此基础上,结合ω-τ零阶辐射传输模型发展了C波段低矮植被光学厚度反演算法,并利用地基微波辐射计观测数据开展了冬小麦的光学厚度反演。结果显示,冬小麦光学厚度反演结果与实测冬小麦LAI在变化趋势上具有较好的一致性,反演算法具有一定的可行性。

关键词: 被动微波遥感光学厚度多角度亮温AIEM模型冬小麦    
Abstract:

Based on the Advanced Integrated Emission Model (AIEM),this study established simulation database of multi\|angular bare soil emissivity at band\|C which contains a wide range of soil parameters,and uses the simulation data to analyze the relationship of the bare soil emissivity polarization differences between observation angles.Therefore,this paper used ω\|τ model to develop an inversion method to estimate vegetation optical depth,and using the measured values obtained by ground based microwave radiometer to invert winter wheat optical depth.The analysis result shows that the trend of inversion value of winter wheat optical depth is consistent well with the trend of measured values of LAI of winter wheat,which proves that the inversion method is feasible.

Key words: Passive microwave remote sensing    Optical depth    Multi-angular brightness temperature    AIEM model    Winter wheat
收稿日期: 2014-01-05 出版日期: 2015-08-14
:  TP 722.6  
基金资助:

国家自然科学基金项目(41171259),国家重点基础研究发展计划(2013CB733406)。

通讯作者: 柴琳娜(1980-),女,湖北荆门人,博士,讲师,主要从事被动微波遥感理论和应用研究。Email:chai@bnu.edu.cn。    
作者简介: 王琦(1990-),男,江苏盐城人,硕士研究生,主要从事被动微波遥感植被方面的研究。Email:wangqi7096@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王琦
柴琳娜
赵少杰
张涛

引用本文:

王琦,柴琳娜,赵少杰,张涛. 基于多角度微波辐射亮温数据反演冬小麦光学厚度[J]. 遥感技术与应用, 2015, 30(3): 424-430.

Wang Qi,Chai Linna,Zhao Shaojie,Zhang Tao. Inversion of Winter Wheat Optical Depth based on Multi-angular Microwave Brightness Temperature. Remote Sensing Technology and Application, 2015, 30(3): 424-430.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.3.0424        http://www.rsta.ac.cn/CN/Y2015/V30/I3/424

[1]Jackson T J,Schmugge T J.Vegetation Effects on the Microwave Emission of Soils[J].Remote Sensing of Environment,1991,36(3):203-212.

[2]Wigneron J P,Kerr Y,Waldteufel P,et al.L-Band Microwave Emission of the Biosphere (L-MEB) Model:Description and Calibration Against Experimental Data Sets over Crop Fields[J].Remote Sensing of Environment,2007,107(4):639-655.

[3]Jackson T J,Vine D M Le,Starks P J,et al.Soil Moisture Mapping at Regional Scales Using Microwave Radiometry:The Southern Great Plains Hydrology Experiment[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2136-2151.

[4]Mao Kebiao,Tang Huajun,Zhou Qingbo,et al.A Survey of Soil Moisture Retrieval by Passive Microwave Remote Sensing[J].Remote Sensing Technology and Application,2007,22(3):466-470.[毛克彪,唐华俊,周清波,等.被动微波遥感土壤水分反演研究综述[J].遥感技术与应用,2007,22(3):466-470.]

[5]Zhang Tingjun,Jin Rui,Gao Feng.Overview of the Satellite Remote Sensing of Frozen Ground:Visible-thermal Infrared and Radar Sensor[J].Advances in Earth Science,2009,24(9):963-972.[张廷军,晋锐,高峰.冻土遥感研究进展[J].地球科学进展,2009,24(9):963-972.]

[6]Owe M,Jeu R D E,Walker J.A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(8):1643-1654.

[7]Becker F,Choudhury B J.Relative Sensitivity of Normalized Dif-ference Vegetation Index (NDVI) and Microwave Polarization Difference Index(MPDI) for Vegetation and Desertification Monitoring[J].Remote Sensing of Environment,1988,24(2):297-311.

[8]Li Zhen,Wang Lei.Vegetation Optical Estimation from Microwave Radiometer Data[J].Journal of Ezhou University,2006,13(3):3-7.[李震,王磊.星载微波辐射计计算植被光学厚度研究[J].鄂州大学学报,2006,13(3):3-7.]

[9]Njoku E G.AMSR Land Surface Parameters Algorithm Theoretical Basis Document (version 3.0)[M].Pasadena:Jet Propulsion Laboratory,1999.

[10]Zhao T,Zhang L,Bindlish R,et al.Estimating Vegetation Water Content During a Growing Season of Cotton[C]//IEEE International Geoscience and Remote Sensing Symposium,Vancouver,2011:791-794.

[11]Shi J,Jackson T J,Tao J,et al.Microwave Vegetation Indices for Short Vegetation Covers from Satellite Passive Microwave Sensor AMSR-E[J].Remote Sensing of Environment,2008,112(12):4285-4300.

[12]Zhang N,Shi J,Sun G,et al.A Simple Algorithm for Retrieval of the Optical Thickness at L-Band from SMOS Data[C]//IEEE International Geoscience and Remote Sensing Symposium,Munich,2012:198-201.

[13]Chen K,Wu T D,Tsang L,et al.Emission of Rough Surfaces Calculated by the Integral Equation Method with Comparison to Three-dimensional Moment Method Simulations[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):90-101.

[14]Paloscia S,Macelloni G,Santi E.Soil Moisture Estimates from AMSR-E Brightness Temperatures by Using a Dual-Frequency Algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(11):3135-3144.

[15]Njoku E G,Chan S K.Vegetation and Surface Roughness Effects on AMSR-E Land Observations[J].Remote Sensing of Environment,2006,100(2):190-199.

[16]Vandegriend A A,Wigneron J.On the Measurement of Microwave Vegetation Properties:Some Guidelines for a Protocol[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(10):2277-2289.

[17]Jackson T J.Measuring Surface Soil Moisture Using Passive Microwave Remote Sensing[J].Hydrological Processes,1993,7(2):139-152.

[18]Zhao S,Zhang L,Zhang Z.Design and Test of a New Truck-Mounted Microwave Radiometer for Remote Sensing Research[C]//IEEE International Geoscience and Remote Sensing Symposium,Boston,2008,Ⅱ:1192-1195.

[19]Chen Liang,Du Jinyang.DTM Extraction from ALS Data in Densely Vegetated Slopes Using Wavelet Algorithm [J].Remote Sensing Information,2010,(1):13-16.[陈亮,杜今阳.L波段多角度微波植被指数研究[J].遥感信息,2010,(1):13-16.]

[20]Chen L,Shi J,Wigneron J P,et al.A Parameterized Surface Emission Model at L-Band for Soil Moisture Retrieval[J].IEEE Transactions on Geoscience and Remote Sensing Letters,2010,7(1):127-130.

[1] 汤玉明,邓孺孺,刘永明,熊龙海. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018, 33(1): 25-34.
[2] 王凯,赵军,朱国锋. 基于GF-1遥感数据决策树与混合像元分解模型的冬小麦种植面积早期估算[J]. 遥感技术与应用, 2018, 33(1): 158-167.
[3] 陈健,周杰,李雅雯. 基于静止卫星GOCI数据的陆地上空气溶胶光学厚度遥感反演[J]. 遥感技术与应用, 2017, 32(6): 1040-1047.
[4] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[5] 张婕,张文煜,冯建东,王宏义,于泽,宋玮. 基于亮温—植被指数—气溶胶光学厚度的MODIS火点监测算法研究[J]. 遥感技术与应用, 2016, 31(5): 886-892.
[6] 冯艾琳,何洪林,刘利民,任小丽,张黎,葛蓉,赵凤华. 基于多源数据的禹城农田生态系统冬小麦生育期识别方法比较研究[J]. 遥感技术与应用, 2016, 31(5): 958-965.
[7] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[8] 张璐,施润和,李龙. 基于HJ-1卫星数据反演长江三角洲地区气溶胶光学厚度[J]. 遥感技术与应用, 2016, 31(2): 290-296.
[9] 宋挺,刘军志,胡婷婷,盛世杰,严飞,冬梅,周文麟. MODIS气溶胶光学厚度产品和激光雷达数据在大气颗粒物监测中的应用[J]. 遥感技术与应用, 2016, 31(2): 397-404.
[10] 权文婷,周辉. HJ星数据在关中冬小麦种植面积遥感监测中的应用 [J]. 遥感技术与应用, 2014, 29(6): 930-934.
[11] 霍彦峰,段民征. 气溶胶光学厚度、类型及廓线对CO2反演的敏感性分析[J]. 遥感技术与应用, 2014, 29(1): 33-39.
[12] 范伟,荀尚培,杨元建,何彬方,张宏群,吴必文,高锷,孙喜波,陈磊. 星载SAR在涡阳县冬小麦测产中的应用[J]. 遥感技术与应用, 2013, 28(6): 1101-1106.
[13] 蔡惠文,杨军,李晓静,夏祥鳌. 近10 a全球气溶胶光学厚度变化特征及其可能原因[J]. 遥感技术与应用, 2012, 27(6): 961-966.
[14] 陈修治,陈水森,苏泳娴,李 丹,韩留生. 基于被动微波遥感的2008年广东省春季低温与典型作物寒害研究[J]. 遥感技术与应用, 2012, 27(3): 387-395.
[15] 张 岩,段民征,吕达仁. 基于氧气A吸收带高光谱反射信息的气溶胶廓线反演算法及模拟反演验证[J]. 遥感技术与应用, 2012, 27(2): 208-219.