Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (3): 469-475    DOI: 10.11873/j.issn.1004-0323.2015.3.0469
图像与数据处理     
一种高空间分辨率遥感影像信噪比测定方法
程结海1,2,3,柏延臣2,3
(1.河南理工大学测绘与国土信息工程学院,河南 焦作 454003;
2.北京师范大学/中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100875;
3.北京师范大学地理学与遥感科学学院,北京 100875)
A Method for Measuring Signal-to-noise Ratio of High Spatial Resolution Remote Sensing Images
Cheng Jiehai1,2,3,Bo Yanchen2,3
(1.School of Surveying&Land Information Engineering,Henan Polytechnic University,Jiaozuo 454003,China;
2.State Key Laboratory of Remote Sensing Science,Jointly Sponsored by Beijing Normal University and
the Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100875,China;
3.School of Geography,Beijing Normal University,Beijing 100875,China)
 全文: PDF(2899 KB)  
摘要:

信噪比是用来评价遥感影像质量一个重要的辐射特性参数。通过合适的方法精确地测定出遥感影像对应的信噪比参数,可以帮助数据提供者或用户更好地预测和提高遥感影像的信息提取能力。现有的信噪比测定方法大多基于中低空间分辨率遥感影像进行,并不能很好地适用于高空间分辨率遥感影像。针对现有信噪比测定方法的这一局限性,从高空间分辨率遥感影像本身特点出发,通过自适应地划分DN值子区间,以一定百分比最小局部标准差的平均值估算每一DN值子区间对应的噪声大小,进而估算每一DN值子区间对应的信噪比。该方法充分考虑了高分遥感影像内空间细节信息、边缘信息以及纹理信息较强而使得均值区域很难获取的特点。研究表明:改进的方法对于估算高分遥感影像信噪比具有较好的适用性。

关键词: 信噪比高空间分辨率遥感影像局部标准差    
Abstract:

The signal\|to\|noise ratio (SNR) is a very important parameter for assessing the quality of remote sensing images.The accurate measurement of the SNR parameter from the corresponding remote sensing image through suitable methods can contribute to the prediction and improvement of the information extraction performance of the remote sensing image for data providers and data users.The existing methods of measuring SNRs are mostly aimed at the median/low spatial resolution images,and are unsuitable for the high spatial resolution images.Considering the limitations of existing methods of measuring SNRs,a method was applied according to the characteristics of high spatial resolution remote sensing images.Based on the adaptive DN subinterval divisions,the noise values of all the DN subintervals were estimated by the mean values of the minimum local standard deviations of the certain percentages,and then the SNRs of corresponding DN subintervals were estimated further.The method overcomes the difficulty of choosing homogeneous areas caused by more detailed spatial information,edge information and texture information.The results show that the improved method has good applicability for estimating the SNRs of high spatial resolution remote sensing images.

Key words: Signal-to-noise ratio    High spatial resolution    Remote sensing image    Local standard deviation
收稿日期: 2014-01-05 出版日期: 2015-08-14
:  P 23  
基金资助:

国家自然科学基金项目(41271347),河南省教育厅科学技术重点研究项目(14A420004),河南省高校基本科研业务费专项资助基金(NSFRF140114),校博士基金项目(B2014-014)。

通讯作者: 柏延臣(1972-),男,甘肃景泰人,教授,主要从事遥感、GIS和空间分析及其不确定性和尺度方面的研究。Email:boyc@bnu.edu.cn。   
作者简介: 程结海(1980-),男,安徽太湖人,副教授,博士,主要从事遥感信息提取与不确定性研究。Email:chengjh80@hpu.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程结海
柏延臣

引用本文:

程结海,柏延臣. 一种高空间分辨率遥感影像信噪比测定方法[J]. 遥感技术与应用, 2015, 30(3): 469-475.

Cheng Jiehai,Bo Yanchen. A Method for Measuring Signal-to-noise Ratio of High Spatial Resolution Remote Sensing Images. Remote Sensing Technology and Application, 2015, 30(3): 469-475.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.3.0469        http://www.rsta.ac.cn/CN/Y2015/V30/I3/469

[1]Wang Yuan,Huang Jingfeng,Wang Fumin,et al.Predicting Nitrogen Concentrations from Hyperspectral Reflectance at Leaf and Canopy for Rape[J].Spectroscopy and Spectral Analysis,2008,28(2):273-277.[王渊,黄敬峰,王福民,等.油菜叶片和冠层水平氮素含量的高光谱反射率估算模型[J].光谱学与光谱分析,2008,28(2):273-277.]

[2]Zhao Gangfeng,Li Jun,Liu Bingfeng,et al.Monitoring Model of Leaf Nitrogen Content of Winter Wheat in Guanzhong District by Hyperspectral Remote Sensing[J].Journal of Triticeae Crops,2012,32(3):530-536.[赵刚峰,李军,刘冰峰,等.关中冬小麦叶片氮素含量高光谱遥感监测模型[J].麦类作物学报,2012,32(3):530-536.]

[3]Huang Shuangping,Hong Tiansheng,Yue Xuejun,et al.Multiple Regression Analysis of Citrus Leaf Nitrogen Content Using Hyperspectral Technology[J].Transactions of the Chinese Society of Agricultural Engineering ,2013,29(5):132-139.(黄双萍,洪添胜,岳学军,等.基于高光谱的柑橘叶片氮素含量多元回归分析[J].农业工程学报,2013,29(5):132-139.)

[4]Wang Jihua,Huang Wenjiang,Lao Cailian,et al.Inversion of Winter Wheat Foliage Vertical Distribution based on Canopy Reflected Spectrum by Partial Least Squares Regression Method[J].Spectroscopy and Spectral Analysis,2007,27(7):1319-1322.(王纪华,黄文江,劳彩莲,等.运用PLS算法由小麦冠层反射光谱反演氮素垂直分布[J].光谱学与光谱分析,2007,27(7):1319-1322.)

[5]Ranjan R,Chopra U K,Sahoo R N,et al.Assessment of Plant Nitrogen Stress in Wheat (Triticum Aestivum L.) through Hyperspectral Indices[J].International Journal of Remote Sensing,2012,33(20):6342-6360.

[6]Herrmann I,Karnieli A,Bonfil D J,et al.SWIR-based Spectral Indices for Assessing Nitrogen Content in Potato Fields[J].International Journal of Remote Sensing,2010,31(19):5127-5143.

[7]Dee L N,McNeil B E,Curtis P G,et al.Relationship of a Landsat Cumulative Disturbance Index to Canopy Nitrogen and Forest Structure[J].Remote Sensing of Environment,2011,118:40-49.

[8]Swain K C,Jayasuriya H P W,Salokhe V M,et al.Suitability of Low-altitude Remote Sensing Images for Estimating Nitrogen Treatment Variations in Rice Cropping for Precision Agriculture Adoption[J].Journal of Applied Remote Sensing,2007,(1):11.

[9]Chen Bing,Den Fujun,Lin Hai,et al.Extracting Nitrogen Contents in Leaves of Cotton under Verticillium Wilt Stress based on Hyperspectral Index[J].Xinjiang Agricultural Sciences,2012,49(12):2222-2228.[陈兵,邓福军,林海,等.基于光谱指数的棉花黄萎病叶片氮素含量提取[J].新疆农业科学,2012,49(12):2222=-2228.]

[10]Mitchell T M.Machine Learning[M].Beijing:Mechanical Industry Press,2003.[米切尔.机器学习[M].北京:机械工业出版社,2003.]

[11]Du Peijun,Tan Kun,Xia Junshi.The Research of Hyperspectral Remote Sensing Image Classification and Support Vector Machine Applied[M].Beijing:Science Press,2012.[杜陪军,谭琨,夏俊士.高光谱遥感影像分类与支持向量机应用研究[M].北京:科学出版社,2012.]

[12]Liang Dong,Guan Qingsong,Huang Wenjiang,et al.Remote Sensing Inversion of Leaf Area Index based on Support Vector Machine Regression in Winter Wheat[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(7):117-123.[梁栋,管青松,黄文江,等.基于支持向量机回归的冬小麦叶面积指数遥感反演[J].农业工程学报,2013,29(7):117-123.]

[13]Lin Hui,Liang Liang,Zhang Lianpeng,et al.Wheat Leaf Area Index Inversion with Hyperspectral Remote Sensing based on Support Vector Regression Algorithm[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(11):139-146.[林卉,梁亮,张连蓬,等.基于支持向量机回归算法的小麦叶面积指数高光谱遥感反演[J].农业工程学报,2013,29(11):139-146.]

[14]ShiJingjing,Liu Zhanyu,Zhang Lili,et al.Hyperspectral Recognition of Rice Damaged by Rice Leaf Roller based on Support Vector Machine[J].ChineseJournal Rice Science,2009,23(3):331-334.[石晶晶,刘占宇,张莉丽,等.基于支持向量机(SVM)的稻纵卷叶螟危害水稻高光谱遥感识别[J].中国水稻科学,2009,23(3):331-334.]

[15]Liu D S,Kelly M,Gong P.A Spatial-temporal Approach to Monitoring Forest Disease Spread Using Multi-temporal High Spatial Resolution Imagery[J].Remote Sensing of Environment,2006,(101):167-180.

[16]Penuelas J,Gamon J A,Fredeen A L,et al.Reflectance Indices Associated with Physiological Changes in Nitrogen and Water-limited Sunflower Leaves[J].Remote Sensing of Environment,1994,48:135-146.

[17]Blackburn G A.Spectral Indices for Estimating Photosynthetic Pigment Concentrations:A Test Using Senescent Tree Leaves[J].International Journal of Remote Sensing,1998,19:657-675.

[18]Gitelson A A,Merzlyak M N.Remote Sensing of Chlorophyll Concentration in Higher Plant Leaves[J].Advances in Space Research,1998,22:689-692.

[19]Gitelson A A,Merzlyak M N.Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L.and Acer Platanoides L.Leaves:Spectral Features and Relation to Chlorophyll Estimation[J].Journal of Plant Physiology,1994,143:286-292.

[20]Vogelmann J E,Rock B N,Moss D M.Red-edge Spectral Measurements from Sugar Maple Leaves[J].International Journal of Remote Sensing,1993,14:1563-1575.

[21]Zarco-tejada P J,Miller J R,Noland T L,et al.Scaling up and Model Inversion Methods with Narrow-band Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39:1491-1501.

[22]Gupta R K,Vijayan D,Prasad T S.Comparative Analysis of Red Edge Hyperspectral Indices[J].Advances in Space Research,2003,32:2217-2222.

[23]Penuelas J,Gamon J A,Fredeen A L,et al.Reflectance Indices Associated with Physiological Changes in Nitrogen and Water-limited Sunflower Leaves[J].Remote Sensing of Environment,1994,48:135-146.

[24]Bames J D,Balaguer L,Manrique E,et al.A Reappraisal of the Use of DMSO for the Extraction and Determination of Chlorophylls Aand B in Lichens and Higher Plants[J].Environmental and Experimental Botany,1992,32:85-100.

[25]Blackburn G A.Spectral Indices for Estimating Photosynthetic Pigment Concentrations:A Test Using Senescent Tree Leaves[J].International Journal of Remote Sensing,1998,19:657-675.

[26]Marshak A,knyazikhin Y,Davis A,et al.Cloud Vegetation Interaction:Use of Normalized Difference Cloud Index for Estimation of Cloud Optical Thicknes[J].Geophysical Research Letters,2000,27:1695-1698.

[27]Gitelson A A,Kaufman Y J,Merzlyak M N.Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS[J].Remote Sensing of Environment,1996,58:289-298.

[28]Zarco-tejada P J,Miller J R,Noland T L,et al.Scaling up and Model Inversion Methods with Narrow-band Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39:1491-1501.

[29]Gitelson A A,Merzlyak  M N.Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L.and Acer Platanoides L.Leaves:Spectral Features and Relation to Chlorophyll Estimation[J].Journal of Plant Physiology,1994,143:286-292.

[30]Rodriguez D,Fitzgerald G J,Belford R,et al.Detection of Nitrogen Deficiency in Wheat from Spectral Reflectance Indices and Basic Crop Ecobiophysiological Concepts[J].Australian Journal of Agricultural Research,2006,57:781-789.

[31]Penuelas J,Baret F,Filella I.Semi-empirical Indices to Assess Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflectance[J].Photosynthetica,1995,31:221-230.

[32]Penuelas J,Gamon J A,Fredeen A L,et al.Reflectance Indices Associated with Physiological Changes in Nitrogen and Water-limited Sunflower Leaves[J].Remote Sensing of Environment,1994,48:135-146.

[33]Sims D A,Gamon J A.Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species,Leaf Structures and Developmental Stages[J].Remote Sensing of Environment,2002,81:331-354.

[34]Datt B.Visible/Near Infrared Reflectance and Chlorophyll Content in Eucalyptus Leaves[J].International Journal of Remote Sensing,1999,20:2741-2759.


[35]Dash J,Curran P J.The MERIS Terrestrial Chlorophyll Index[J].International Journal of Remote Sensing,2004:25,5403-5413.

[1] 吴兴,张霞,孙雪剑,张立福,戚文超. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
[2] 周子勇. 运用经验模态分解和压缩感知方法进行遥感影像超分辨率重建[J]. 遥感技术与应用, 2018, 33(1): 96-102.
[3] 周为峰,曹利,李小恕,程田飞. 沿海牡蛎养殖的WorldView-2影像融合方法评价[J]. 遥感技术与应用, 2018, 33(1): 103-109.
[4] 卜帆,石玉立. 机载LiDAR高差和高分影像的城市树冠提取比较[J]. 遥感技术与应用, 2017, 32(5): 875-882.
[5] 林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
[6] 吕利利,颉耀文,董龙龙. 基于不同地形校正模型的影像反射率对比分析[J]. 遥感技术与应用, 2017, 32(4): 751-759.
[7] 吕利利,颉耀文,黄晓君,张秀霞,李汝嫣. 基于CART决策树分类的沙漠化信息提取方法研究[J]. 遥感技术与应用, 2017, 32(3): 499-506.
[8] 王艳楠,王健健,龚健新,袁帅,刘辉,罗文. 基于环境卫星数据的沿海滩涂地物类型分类的随机森林方法[J]. 遥感技术与应用, 2016, 31(6): 1107-1113.
[9] 朱济帅,尹作霞,谭琨,王雪,李二珠,杜培军. 基于空间邻域信息的高光谱遥感影像半监督协同训练[J]. 遥感技术与应用, 2016, 31(6): 1122-1130.
[10] 吴阿丹,郭建文. 遥感影像Web共享关键技术应用研究[J]. 遥感技术与应用, 2016, 31(6): 1209-1214.
[11] 蔡二丽,窦宝成,彭实,刘强,闻建光. 基于图像融合的反照率产品降尺度方法研究[J]. 遥感技术与应用, 2016, 31(4): 724-730.
[12] 李盛阳,于海军,韩洁,黑保琴. 基于三维地球的海量遥感影像高效可视化管理系统的设计与实现[J]. 遥感技术与应用, 2016, 31(1): 170-176.
[13] 毛召武,程结海,袁占良. 顾及面积和位置差异的高分遥感影像分割质量评价方法[J]. 遥感技术与应用, 2016, 31(1): 186-193.
[14] 张文博,覃志豪,刘含海. 基于分形理论的土地利用类型变化研究—以广州番禺为例[J]. 遥感技术与应用, 2015, 30(5): 952-958.
[15] 费鲜芸,王婷,魏雪丽. 基于多尺度分割的遥感影像滨海湿地分类[J]. 遥感技术与应用, 2015, 30(2): 298-303.