Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (3): 510-517    DOI: 10.11873/j.issn.1004-0323.2015.3.0510
图像与数据处理     
基于高分辨遥感数据的胡杨与柽柳树冠提取
周艳飞1,张绘芳2,李霞1,杨帆1,丁程锋1
(1.新疆农业大学草业与环境科学学院,新疆 乌鲁木齐 830052;
2.新疆林业科学院,新疆 乌鲁木齐 830000)
Extraction of Tree-crown of  Populus Euphratica  and  Tamarix Ramosissima  based on High Resolution Remote Sensing Data
Zhou Yanfei1,Zhang Huifang2,Li Xia1,Yang Fan1,Ding Chengfeng1
(1 College of Pratacultural and Environmental Science,Xinjiang
Agricultural University,Urumqi 830052,China;
2 Xinjiang Academy of Forestry Science,Urumqi 830000,China)
 全文: PDF(1644 KB)  
摘要:

胡杨、柽柳是干旱荒漠区生境的指示种,其树冠提取是荒漠生境遥感定量监测的基础。以塔里木河下游胡杨、柽柳为研究对象,基于QuickBird数据,使用光谱单数据源SVM、光谱结合纹理SVM、面向对象分类和最大似然分类法提取树冠。结果表明:①光谱结合纹理SVM比光谱单源SVM分类精度高9.65%,冠幅估测精度高7.18%,表明高分辨影像上纹理是提高分类精度的重要因素;②面向对象分类法精度最高,分类总体精度86.47%,较光谱单源SVM提高15.67%,较光谱结合纹理SVM提高6.02%,较最大似然法提高22.58%,其冠幅估测精度达87.45%。它兼顾面向对象影像分割与支持向量机方法优点,有效利用分割对象光谱、纹理和空间等信息,较好地解决了其他方法“同物异谱、异物同谱”造成提取树冠破碎的问题,使树冠提取具有较好的稳定性和较高精度。

关键词: 面向对象支持向量机纹理树冠提取QuickBird    
Abstract:

P.euphratica and  T.ramosissimaare are indicator species of ecological environment in arid desert area,the extraction of their tree\|crown is the basis of quantitative monitoring of desert habitat by means of remote sensing.In this paper,Taking  P.euphratica and T.ramosissimain in the lower reaches of Tarim River as the study object,the method of single data source SVM (Support Vector Machine)based on spectrum characteristics,SVM method based spectrum and texture characteristics,object\|oriented classification method and maximum likelihood classification method was used to extract tree\|crown from the QuickBird image.Single data source SVM method and maximum likelihood classification method is applied to classify the image which contains only spectrum characteristics.Other methods were carried out as follows:Firstly,calculating the textural measures by grey level co\|occurrence matrix and determining the optimal parameters for texture information by principal component analysis.Secondly,the optimal texture bands and the spectrum bands were combined into a new image.Finally,the support vector machine method and object\|oriented classification method was applied to classify the new image.The results show that:(1)The classification accuracy of SVM method based spectrum and texture characteristics is 9.65%,wich higher than that of single data source SVM method,the estimated accuracy of average crown diameter of the former is 7.18%,which higher than the later.The result indicates that texture is an important factor to improve the classification accuracy in high resolution images;(2)The tree\|crown extraction accuracy of object\|oriented classification is the highest.Its classification overall accuracy is 86.47%.The accuracy is 15.67% higher than single data source SVM method,6.02% higher than SVM method based on spectrum and texture characteristics,and 22.58% higher than maximum likelihood classification.Its estimated accuracy of average crown diameter is 87.45%,which suggests that object\|oriented classification method can effectively extract tree\|crown information in high\|resolution image and is better than the other classification methods.

Key words: Object-oriented    Support vector machine    Texture    Tree-crown extraction    QuickBird
收稿日期: 2013-11-11 出版日期: 2015-08-14
:  TP 79  
基金资助:

国家自然科学基金项目(40961027),新疆草地资源与生态实验室资助。

通讯作者: 李霞(1956-),女,山东宁津人,教授,博导,主要从事资源生态遥感研究。Email:xjlx782@126.com。    
作者简介: 周艳飞(1988-),女,新疆乌鲁木齐人,硕士研究生,主要从事资源生态遥感研究。Email:zhouyanfei862@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周艳飞
张绘芳
李霞
杨帆
丁程锋

引用本文:

周艳飞,张绘芳,李霞,杨帆,丁程锋. 基于高分辨遥感数据的胡杨与柽柳树冠提取[J]. 遥感技术与应用, 2015, 30(3): 510-517.

Zhou Yanfei,Zhang Huifang,Li Xia,Yang Fan,Ding Chengfeng. Extraction of Tree-crown of  Populus Euphratica  and  Tamarix Ramosissima  based on High Resolution Remote Sensing Data. Remote Sensing Technology and Application, 2015, 30(3): 510-517.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.3.0510        http://www.rsta.ac.cn/CN/Y2015/V30/I3/510

[1]Fu Wenjie,Lin Mingsen.Study on Extracting of Loquat Information Using SVM and Gray-level Co-occurrence Matrix from QuickBird Image[J].Remote Sensing Technology and Application,2010,25(5):695-699.[傅文杰,林明森.利用SVM与灰度共生矩阵从QuickBird影像中提取枇杷信息[J].遥感技术与应用,2010,25(5):695-699.]

[2]Wang Ni,Peng Shikui,Li Mingshi.High-resolution Remote Sensing of Textural Images for Tree Species Classification[J].Journal of Zhejiang Agricultural and Forestry University,2012,29(2):210-217.[王妮,彭世揆,李明诗.基于树种分类的高分辨率遥感数据纹理特征分析[J].浙江农林大学学报,2012,29(2):210-217.]

[3]Huang Jianwen,Ju Hongbo,Zhao Feng,et al.Research onMonitoring Survival Rate and Growth Condition of Farm Land Returned to Forests Using Remote Sensing Data[J].Journal of Remote Sensing,2007,11(6):899-905.[黄建文,鞠洪波,赵峰,等.利用遥感进行退耕还林成活率及长势监测方法的研究[J].遥感学报,2007,11(6):899-905.]

[4]Wu Jian,Peng Daoli.Tree-crown Information Extraction of Farmland Returned to Forests Using QuickBird Image based on Object-oriented Approach[J].Spectroscopy and Spectral Analysis,2010,30(9):2533-2536.[吴见,彭道黎.基于面向对象的QuickBird影像退耕地树冠信息提取[J].光谱学与光谱分析,2010,30(9):2533-2536.]

[5]Wang Ruwen,Peng Daoli,Wu Tao,et al.Study on Tree-crown Extraction from QuickBird Data based on Object-oriented Method[J].Chinese Agricultural Science Bulletin,2010,26(15):128-134.[王茹雯,彭道黎,吴涛,等.利用面向对象的技术进行树冠信息提取研究[J].中国农学通报,2010,26(15):128-134.]

[6]Brandtberg T,Walter F.Automated Delineation of Individual Tree Crowns in High Spatial Resolution Aerial Images by Multiple-scale Analysis[J].Machine Vision and Applications,1998,11(2):64-73.

[7]Wan Hongmei,Li Xia,Dong Daorui,et al.Abstraction and Analysis of Tree-crown of Forest Land based on QuickBird Image in the Lower Reaches of Tarim River[J].Acta Botanica Boreali-Occidentalia Sinica,2011,31(9):1878-1885.[万红梅,李霞,董道瑞,等.塔里木河下游林地树冠QuickBird影像信息提取与分析[J] .西北植物学报,2011,31(9):1878-1885.][8]Jiang Yongtao.Study on Extracting Land-use Information based on QuickBird Image[D].Chengdu:Sichuan Agricultural University,2009.[蒋永涛.基于QuickBird影像土地利用信息提取研究[D].成都:四川农业大学,2009.]

[9]Wu Wei,Li Yuxia,Tong Ling,et al.Object-oriented Segmentation of Remote Sensing Image based on Co-occurrence Matrix[J].Computer Engineering and Design,2011,32(2):596-598.[武维,李玉霞,童玲,等.基于共生矩阵的遥感图像面向对象分割[J].计算机工程与设计,2011,32(2):596-598.]

[10]Haralick R.Statistical and Structural Approaches to Texture[J].Proceedings of the IEEE,1979,67(5):786-804.

[11]Pan Jie,Li Mingshi.Textural Features Analysis of High-resolution Remote Sensing Image based on the Information Abundance[J].Journal of Nanjing Forestry University (Natural Science Edition),2010,34(4):129-134.[潘洁,李明诗.基于信息量的高分辨率影像纹理提取的研究[J].南京林业大学学报(自然科学版),2010,34(4):129-134.]

[12]Ding Shifei,Qi Bingjuan,Tan Hongyan.An Overview on Theory and Algorithm of Support Vector Machines[J].Journal of University of Electronic Science and Technology of China(Natural Science Edition),2011,40(1):2-10.[丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报(自然科学版),2011,40(1):2-10.]

[13]Zhang Xuegong.Introduction to Statistical Learning Theory and Support Vector Machines[J].Acta Automatica Sinica,2000,26(1):32-42.[张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.]

[14]Li Panchi,Xu Shaohua.Support Vector Machine and Kernel Function Characteristic Analysis in Pattern Recognition[J].Computer Engineering and Design,2005,26(2):302-304.[李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304.]

[15]Zhao Jiewen,Hu Huaiping,Zou Xiaobo.Application of Support Vector Machine to Apple Classification with Near-infrared Spectroscopy[J].Transactions of the Chinese Society of Agricultural Engineering,2007,23(4):149-152.[赵杰文,呼怀平,邹小波.支持向量机在苹果分类的近红外光谱模型中的应用[J].农业工程学报,2007,23(4):149-152.]

[16]Kerrthi S S,Lin C I.Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel[J].Neural Computation,2003,15(7):1667-1689.

[17]Zhang Jinshui,He Chunyang,Pan Yaozhong,et al.The High Spatial Resolution RS Image Classification based on SVM Method with the Multi-source Data[J].Journal of Remote Sensing,2006,10(1):49-57.[张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57.]

[18]Ma Qingshen.Land Use Change and Its Eco-environment Effect of Linyi Municipality[D].Nanjing:Nanjing University,2013.[马庆申.临沂市土地利用变化及其生态环境效应分析[D].南京:南京大学,2013.]

[19]Mo Lijiang,Cao Yu,Hu Yuanman,et al.Object-oriented Classification for Satellite Remote Sensing of Wetlands:A Case Study in Southern Hangzhou Bay Area[J].Wet and Science,2012,10(2):206-213.[莫利江,曹宇,胡远满,等.面向对象的湿地景观遥感分类——以杭州湾南岸地区为例[J] .湿地科学,2012,10(2):206-213.]

[20]Liu Mengmeng,Liu Yalan,Sun Guoqing,et al.SVM Land Cover Classification based on Spectral and Textural Features Using Stratified Samples[J].Remote Sensing Technology and Application,2014,29(2):315-323.[刘萌萌,刘亚岚,孙国庆,等.结合纹理特征的SVM样本分层土地覆盖分类[J].遥感技术与应用,2014,29(2):315-323.]

[21]Deng Shubin.ENVI Remote Sensing Image Processing Method[M].Beijing:Science Press,2010:217-218.[邓书斌.ENVI遥感图像处理方法[M].北京:科学出版社,2010:217-218.]

[22]Wei Xuehua.Research of Forestry Geometrical Parameter Extraction with Light and Small Airborne Remote Sensing System[D].Beijing:Beijing Forestry University,2013.[韦雪花.轻小型航空遥感森林几何参数提取研究[D].北京:北京林业大学,2013.]

[1] 杨朦朦,汪汇兵,欧阳斯达,范奎奎,戚凯丽. 基于双树复小波分解的BP神经网络遥感影像分类[J]. 遥感技术与应用, 2018, 33(2): 313-320.
[2] 闫鹏飞,明冬萍. 尺度自适应的高分辨率遥感影像分水岭分割方法[J]. 遥感技术与应用, 2018, 33(2): 321-330.
[3] 熊伟,徐永力,姚力波,崔亚奇. 基于SVM的高分辨率SAR图像舰船目标检测算法[J]. 遥感技术与应用, 2018, 33(1): 119-127.
[4] 江东,陈帅,丁方宇,付晶莹,郝蒙蒙. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1): 143-150.
[5] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[6] 卜帆,石玉立. 机载LiDAR高差和高分影像的城市树冠提取比较[J]. 遥感技术与应用, 2017, 32(5): 875-882.
[7] 陈洋波,张涛,窦鹏,董礼明,陈华. 基于SVM的东莞市土地利用/覆被自动分类误差来源与后处理[J]. 遥感技术与应用, 2017, 32(5): 893-903.
[8] 林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
[9] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[10] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[11] 施佩荣,陈永富,刘华,吴云华,魏新,钟泽兵. 基于改进的面向对象遥感影像分类方法研究—以西藏米林县典型林区为例[J]. 遥感技术与应用, 2017, 32(3): 466-474.
[12] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[13] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[14] 史飞飞,高小红,杨灵玉,何林华,贾伟. 基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究[J]. 遥感技术与应用, 2017, 32(2): 206-217.
[15] 胡根生,吴问天,黄文江,梁栋,黄林生. 粒子群优化的最小二乘支持向量机在小麦白粉病监测中的应用[J]. 遥感技术与应用, 2017, 32(2): 299-304.