Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (4): 626-637    DOI: 10.11873/j.issn.1004-0323.2015.4.0626
模型与反演     
基于分组分裂窗算法的MTSAT-1R地表温度反演
潘颖琪1,2,3,贾立1,2
(1.中国科学院遥感与数字地球研究所,遥感科学国家重点实验室,北京 100101;
2.全球变化研究协同创新中心,北京 100875;
3.中国科学院大学,北京 100049)
Retrieval of Land Surface Temperature Using a Classified Split-window Algorithm from MTSAT-1R Data
Pan Yingqi1,2,3 ,Jia Li1,2
(1.State Key Laboratory of Remote Sensing Science,Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences,Beijing 100101,China;
2.Joint Center for Global Change Studies,Beijing 100875,China;
3.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(4410 KB)  
摘要:

以黑河流域上游和中游为研究区,针对MTSAT\|1R卫星数据,运用MODTRAN 4.0及晴空状态下的TIGR大气廓线数据,发展了根据地表比辐射率、大气水汽含量、传感器观测角度分组模拟的分裂窗算法,进行地表温度反演。分析了传感器噪声、地表比辐射率和大气水汽含量3个参数对该算法的影响,并结合模拟数据、地面观测数据及MODIS地表温度产品,对反演结果进行分析评价。结果表明:当传感器垂直观测或大气水汽含量小于2.5 g/cm2时,反演精度在1 K以内;反演结果与地面观测数据对比差异较小,在阿柔站RMSE为3.7 K(日)/1.4 K(夜),在盈科站RMSE为2.4 K(日)/2.0 K(夜);与MODIS地表温度产品比较,空间分布呈现出一致性。总之,分组分裂窗算法能较好地用于MTSAT\|1R卫星数据进行地表温度反演。

关键词: MTSAT-1R地表温度分组分裂窗算法    
Abstract:

A Classified Split\|Window(C\|SW)algorithm is developed to retrieve Land Surface Temperature(LST)from the thermal infrared data observed by the Multifunctional Transport Satellites\|1R(MTSAT\|1R)using atmospheric radiative transfer model MODTRAN 4.0 and Thermodynamic Initial Guess Retrieval(TIGR)clear\|sky atmospheric profile data.The coefficients of the C\|SW algorithm are divided into several groups according to different ranges of the three parameters,i.e.the atmospheric water vapor content,the land surface emissivity and the satellite zenith viewing angle.The method is applied to the upstream and midstream region of the Heihe river basin.The errors of the LST retrieval caused by the uncertainties of instrument noises,land surface emissivity and atmospheric water vapor content are analyzed.Finally,the retrieved LST from MTSAT\|1R is compared with the simulation data,the ground observations and MODIS LST products over the whole study area and at the experimental sites.The results indicate that the accuracy of LST retrieval is less than 1 K when the sensor viewing zenith angle is close to nadir or atmospheric water vapor is less than 2.5 g/cm2.The comparison between the estimated LST and the in\|situ measurements show that the root mean squared errors(RMSE)are 3.7 K(daytime)/1.4 K(nighttime)at Arou site and 2.4 K(daytime)/2.0 K(nighttime)at Yingke site,respectively.Moreover,the comparison with MODIS products shows consistent spatial pattern over the study area.As a conclusion,the proposed classified split\|window algorithm can be successfully applied to the LST retrievals from MTSAT\|1R data over the study area.

Key words: MTSAT-1R    Land surface temperature    Classified Split-Window (C-SW) algorithm
收稿日期: 2014-12-17 出版日期: 2015-09-22
:  TP 79  
基金资助:

国家自然科学基金项目 (91025004),中国科学院/国家外国专家局创新团队国际合作伙伴计划 (KZZD-EW-TZ-09)。

通讯作者: 贾立(1965-),女,天津人,研究员,博士生导师,主要从事光学定量遥感以及陆面过程、气候变化方面的研究。Email:jiali@radi.ac.cn。   
作者简介: 潘颖琪(1988-),女,湖北武汉人,硕士研究生,主要从事地表温度反演研究。Email: panyq@radi.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘颖琪
贾立

引用本文:

潘颖琪,贾立. 基于分组分裂窗算法的MTSAT-1R地表温度反演[J]. 遥感技术与应用, 2015, 30(4): 626-637.

Pan Yingqi,Jia Li. Retrieval of Land Surface Temperature Using a Classified Split-window Algorithm from MTSAT-1R Data. Remote Sensing Technology and Application, 2015, 30(4): 626-637.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.4.0626        http://www.rsta.ac.cn/CN/Y2015/V30/I4/626

[1]Chen Hanyue,Niu Zheng,Bi Haibo.A Comparison of Two Split-window Algorithms for Retrieving Land Surface Temperature from MODIS Data[J].Remote Sensing Technology and Application,2012,28(2):174-181.[陈瀚阅,牛铮,毕海波.MODIS数据地表温度反演劈窗算法比较[J].遥感技术与应用,2013,28(2):174-181.]

[2]Liu Chenchen,Cao Guangzhen,Zhang Mingwei,et al.Influence of Temporal and Variability on Estimation of Air Temperatures from MODIS Land Surface Temperatures[J].Remote Sensing Technology and Application,2013,28(5):831-835.[刘晨晨,曹广真,张明伟,等.时空尺度对利用MODIS地表温度估算空气温度的影响研究[J].遥感技术与应用,2013,28(5):831-835.]

[3]Wang Binbin,Ma Yaoming,Ma Weiqiang.Estimation of Land Surface Temperature Retrieved from EOS/MODIS in Naqu Area over Tibetan Plateau[J].Journal of Remote Sensing,2012,16(6):1289-1309.[王宾宾,马耀明,马伟强.青藏高原那曲地区MODIS地表温度估算[J].遥感学报,2012,16(6):1289-1309.]

[4]Hu Juyang,Tang Shihao,Dong Lixin.Land Surface Temperature Retrieval from FY3A/MERSI[J].Remote Sensing Technology and Application,2014,29(4):531-538.[胡菊旸,唐世浩,董立新.FY3A/MERSI 地表温度反演[J].遥感技术与应〖HJ1.9mm〗用,2014,29(4):531-538.]

[5]Wataru T,Kei O,Shin A.Super-resolution of MTSAT Land Surface Temperature by Blending MODIS and AVNIR2[J].Asian Journal of Geoinformatics,2012,12(2).http://webqms,iis,u-tokyo.ac.jp/pdf/mtsat_Lst-Superres.pdf.

[6]Sobrino J A,Romaguera M.Land Surface Temperature Retrieval from MSG1-SEVIRI Data[J].Remote Sensing of Environment,2004,92(2):247-254.

[7]Kei O,Wataru T,Masayuki T.Evaluation of the Algorithms for Land Surface Temperature Retrieval from MTSAT Data[J].Remote Sensing and Photogrammetry,2010,49:251-259.

[8]Li Z L,Wu H,Wang N,et al.Land Surface Emissivity Retrieval from Satellite Data[J].International Journal of Remote Sensing,2013,34(9-10):3084-3127.

[9]Li Z L,Tang B,Wu H,et al.Satellite-derived Land Surface Temperature:Current Status and Perspectives[J].Remote Sensing of Environment,2013,131:14-37.

[10]Wan Z,Dozier J.A Generalized Split-window Algorithm for Retrieving Land Surface Temperature from Space[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(4):892-905.

[11]Tang B,Bi Y,Li Z L,et al.Generalized Split-window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite(FY-2C)Data[J].Sensors,2008,8(2):933-951.

[12]Gao C,Li Z L,Tang B,et al.An Improved Algorithm for Retrieving Land Surface Emissivity and Temperature from MSG-2/SEVIRI Data[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52:3175-3191.

[13]Li Xin,Li Xiaowen,Li Zengyuan,et al.Progresses on the Watershed Allied Telemetry Experimental Research(WATER)[J].Remote Sensing Technology and Application,2012,27(5):637-649.[李新,李小文,李增元,等.黑河综合遥感联合试验研究进展:概述[J].遥感技术与应用,2012,27(5):637-649.]

[14]Anderson G P,Berk A,Acharya P K,et al.MODTRAN4:Radiative Transfer Modeling for Remote Sensing[C]//International Society for Optics and Photonics Proc,SPIE,2000:176-183.

[15]Saunders R W,Kriebel K T.An Improved Method for Detecting Clear Sky and Cloudy Radiances from AVHRR Data[J].International Journal of Remote Sensing,1988,9(1):123-150.

[16]Wen Xiongfei,Dong Xinyi,Liu Liangming.Cloud Index Method for Cloud Detection[J].Geomatics and Information Science of Wuhan University,2009,(7):838-841.[文雄飞,董新奕,刘良明.“云指数法” 云检测研究[J].武汉大学学报(信息科学版),2009,(7):838-841.]

[17]Sobrino J A,Li Z L,Stoll M P,et al.Improvements in the Split-window Technique for Land Surface Temperature Determination[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(2):243-253.

[18]Li Z L,Jia L,Su L,et al.A New Approach for Retrieving Precipitable Water from ATSR2 Split-window Channel Data over Land Area[J].International Journal of Remote Sensing,2003,24(24):5095-5117.

[19]Zeng Gehong.Principles of Infrared Systems’ NEDT and Theoretical Calculations[J].Infrared Technology,2012,34(2):63-67.[曾戈虹.红外系统噪声等效温差机理分析与实例计算[J].红外技术,2012,34(2):63-67.]

[20]Li Hua.The Study of Algorithms for Land Surface Temperature Retrieval from HJ-1B/IRS and FY-3A/MERSI Data[D].Beijing:Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,2010.[历华.环境一号卫星红外相机和风云三号卫星中分辨率光谱成像仪地表温度反演算法研究[D].北京:中国科学院遥感与数字地球研究所,2010.][21]Yang Jinxin,Jia Li.Retrieval of Soil and Vegetation Component Temperatures based on Dual-anglular AATSR Remote Sensing Data[J].Remote Sensing Technology and Application,2014,29(2):247-257.[杨锦鑫,贾立.基于双角度AATSR遥感数据的组分温度反演[J].遥感技术与应用,2014,29(2):247-257.]

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 李军,龚围,辛晓洲,高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[5] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[6] 史新,周买春. 基于Landsat 8数据的3种地表温度反演算法在三河坝流域的对比分析[J]. 遥感技术与应用, 2018, 33(3): 465-475.
[7] 郑明亮,黄方,张鸽. 基于TsHARP模型和STITFM算法的地表温度影像融合研究[J]. 遥感技术与应用, 2018, 33(2): 275-283.
[8] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[9] 李艳,侯金亮,黄春林. 基于Copula函数的地表温度空间降尺度研究[J]. 遥感技术与应用, 2017, 32(5): 818-824.
[10] 郑飞,张殿发,孙伟伟,杨刚. 基于ASTER遥感的杭州城市热/冷岛的景观特征分析[J]. 遥感技术与应用, 2017, 32(5): 938-947.
[11] 李小龙,杨英宝,曹利娟,章勇. 基于遥感和CFD模拟的城市绿地形态对热环境的影响研究[J]. 遥感技术与应用, 2016, 31(6): 1150-1157.
[12] 臧琳,宋冬梅,单新建,崔建勇,邵红梅,沈晨,时洪涛,宋先月. 基于被动微波与时空联合算法的云下像元LST重建[J]. 遥感技术与应用, 2016, 31(4): 764-772.
[13] 赵伟,李爱农,张正健,边金虎,靳华安,尹高飞,南希,雷光斌. 基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J]. 遥感技术与应用, 2016, 31(1): 63-73.
[14] 杨成松,车涛,欧阳斌. 青藏高原地表温度时空变化分析[J]. 遥感技术与应用, 2016, 31(1): 95-101.
[15] 龚绍琦,张茜茹,王少峰,周寅,张世乔,国文哲. 地表温度遥感中大气平均作用温度估算模型研究[J]. 遥感技术与应用, 2015, 30(6): 1113-1121.