Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (4): 775-783    DOI: 10.11873/j.issn.1004-0323.2015.4.0775
图像与数据处理     
基于多时相Landsat8 OLI影像的作物种植结构提取
刘吉凯1,钟仕全2,梁文海3
(1.南京信息工程大学地理与遥感学院,江苏 南京 210044;
2.广西壮族自治区气象减灾研究所/国家卫星气象中心遥感应用试验基地,广西 南宁 530022;
3.广西自治区林业勘测设计院,广西 南宁 530011)
Extraction on Crops Planting Structure based on Multi-temporal Landsat8 OLI Images
Liu Jikai1,Zhong Shiquan2,Liang Wenhai3
(1.School of Geography & Remote Sensing,Nanjing University of
Information Science & Technology,Nanjing 210044,China;
2.Guangxi Institute of Meteorology,Nanning/Remote Sensing Application and Test Base of
National Satellite Meteorology Centre,Nanning 530022,China;
3.Guangxi Forest Inventory & Planning Institute,Nanning 530011,China)
 全文: PDF(3590 KB)  
摘要:

针对基于多时相遥感影像、多种特征量提取多种作物种植结构在我国研究较少的现状,利用多时相Landsat8 OLI影像数据,根据温宿县不同作物的农事历,通过分析主要地物的光谱特征和归一化植被指数的时间变化信息,构建不同作物种植结构提取的决策树模型,实现了对温宿县多种作物种植结构信息的提取。结果表明:①水稻的最佳识别依据是5月20日影像的近红外波段和7月23日影像的NDVI值;棉花和春玉米的最佳识别依据是5月20日~9月9日影像的NDVI变化值;冬小麦—夏玉米和林果的最佳识别依据是5月20日~7月23日影像的NDVI变化值;②与单时相监督分类相比,多时相决策树法对多种作物种植结构的提取效果更理想,总体精度提高了7.90%,Kappa系数提高了0.10;③Landsat8 OLI影像数据分辨率高,成本低,获取方便,是农作物遥感的良好数据源。

关键词: Landsat8 OLI影像光谱特征NDVI决策树分类模型作物种植结构    
Abstract:

Crops planting structure and spatiotemporal change information have become the focus of the current agricultural remote sensing application.However,using the spectral characteristics and vegetation index of multi\|temporal remote sensing data to extract the crops planting structure was still few in our country.The paper took Wensu county as the study area,used Landsat8 OLI satellite data,analyzed the difference of spectral characteristics and vegetation index of the main land cover types according to the crop phenological calendar,and modeled a decision tree to identification crops,then used the model to extract crops planting structure precisely on Wensu county.The results suggested that:① The optimal choice to identify paddy rice is near infrared band on May 20 and NDVI value on July 23;NDVI change value from May 20 to September 9,which is most helpful for the identification of cotton and corn;NDVI change value from May 20 to July 23,which is the best choice for wheat and forest fruit.② the decision tree classification based on multi\|temporal Landsat8 OLI images outperformed the single\|temporal supervised classification results with the overall accuracy increased 7.90% and Kappa coefficient increased 0.10.③Landsat8 OLI satellit data has high spatial resolution and convenient access,so it is a potential data source for crops information identification,monitoring,extracting in the future.

Key words: Landsat8 OLI images    Spectral characteristics    NDVI    Decision tree classification    Crops planting structure
收稿日期: 2014-03-10 出版日期: 2015-09-22
:  TP 79  
基金资助:

库尔勒市香梨信息系统建设项目资助,广西科学研究与技术开发计划课题(桂科攻0816006-8)。

通讯作者: 钟仕全(1964-),男,广西桂平人,高级工程师,主要从事卫星遥感应用研究。Email:zhongshq@sina.com。    
作者简介: 刘吉凯(1989-),男,甘肃武威人,硕士研究生,主要从事作物遥感监测与方法研究。Email:897285492@qq.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘吉凯
钟仕全
梁文海

引用本文:

刘吉凯,钟仕全,梁文海. 基于多时相Landsat8 OLI影像的作物种植结构提取[J]. 遥感技术与应用, 2015, 30(4): 775-783.

Liu Jikai,Zhong Shiquan,Liang Wenhai. Extraction on Crops Planting Structure based on Multi-temporal Landsat8 OLI Images. Remote Sensing Technology and Application, 2015, 30(4): 775-783.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.4.0775        http://www.rsta.ac.cn/CN/Y2015/V30/I4/775

[1]Han Lijian,Pan Yaozhong,Jia Bin,et al.Acquisition of Paddy Rice Coverage based on Multi-temporal IRS-P6 Satellite AWIFS RS Data[J].Transactions of the Chinese of Agriculture Engineering,2007,23(5):137-143.[韩立建,潘耀忠,贾斌,等.基于多时相IRS-P6卫星AWIFS影像的水稻种植面积提取方法[J].农业工程学报,2007,23(5):137-143.]

[2]Han Yingjuan,Li Jianping,Zhang Xueyi,et al.Application of CEBRS in the Investigation of Paddy Rice Area in Ningxia[J].Agriculture Network Information,2006,11:13-17.[韩颖娟,李剑萍,张学艺,等.中巴资源卫星在宁夏水稻种植面积调查中的应用[J].农业网络信息,2006,11:13-17.]

[3]Zheng Changchun.Study on Remote Sensing Information Extraction of Paddy Rice Planting Area[D].Urumqi:Xinjiang Agriculture University,2008.[郑长春.水稻种植面积遥感信息提取研究[D].乌鲁木齐:新疆农业大学,2008.]

[4]Liu Meicen,Li Xia,Jiang Pinan,et al.The Application of ASTER Data in Cotton Information Classification——Taking 16 Farm of Nongyishi of Production and Construction Group as an Example[J].Remote Sensing Technology and Application,2005,20(6):591-595.[刘玟岑,李霞,蒋平安,等.ASTER数据在棉花信息提取中的应用——以兵团农一师十六团为例[J].遥感技术与应用,2005,20(6):591-595.]

[5]Cao Weibin,Yang Bangjie,Song Jinpeng.Spectral Information based Model for Cotton Identification on Landsat TM Image[J].Transactions of the Chinese of Agriculture Engineering,2004,20(4):112-116.[曹卫彬,杨邦杰,宋金鹏.TM影像中基于光谱特征的棉花识别模型[J].农业工程学报,2004,20(4):112-116.]

[6]Tu Xingyue,Zhao Dongling.The Analysis of Crops Identification Method based on Multi-temporal Remote Sensing Data[J].Bulletin of Surveying and Maping,2012,81(S1):380-383.[屠星月,赵冬玲.多时相遥感影像农作物识别方法的分析[J].测绘通报,2012,81(S1):380-383.]

[7]Wei Caixin,Wang Xinsheng,Liu Hai,et al.Extraction of Paddy Rice Coverage based on the HJ Satellite Data[J].Journal of Geo-information Science,2012,14(3):382-388.[魏新彩,王新生,刘海,等.HJ卫星图像水稻种植面积的识别分析[J].地球信息科学学报,2010,14(3):382-388.]

[8]Ma Li,Xu Xingang,Liu Liangyun,et al.Study on Crops Classificationbased on Multi-temporal NDVI and Characteristic Bands[J].Remote Sensing Technology and Application,2008,23(5):520-524.[马丽,徐新刚,刘良云,等.基于多时相NDVI及特征波段的作物分类研究[J].遥感技术与应用,2008,23(5):520-524.]

[9]Zhu Liang,Ping Bo,Su Fenzhen,et al.Using Decision Tree Model to Extract Paddy Rice Information from Multi-temporal TM Images[J].Journal of Geo-information Science,2013,15(3):446-451.[朱良,平博,苏奋振,等.多时相TM 影像决策树模型的水稻识别提取[J].地球信息科学学报,2013,15(3):446-451.]

[10]Hu Qiong,Wu Wenbin,Song Qian,et al.Recent Progresses in Research of Crop Patterns Mapping by Using Remote Sensing[J].Scientia Agricultura Sinica,2015,48(10):1900-1914.[胡琼,吴文斌,宋茜,等.农作物种植结构遥感提取研究进展[J].中国农业科学,2015,48(10):1900-1914.]

[11]Hao Weiping,Mei Xurong,Cai Xueliang,et al.Crop Planting Extraction based on Multi-temporal Remote Sensing Data in Northeast China[J].Transactions of the Chinese of Agriculture Engineering,2011,27(1):201-207.[郝卫平,梅旭荣,蔡学良,等.基于多时相遥感影像的东北三省作物分布信息提取[J].农业工程学报,2011,27(1):201-207.]

[12]USGS.Landsat Data Continuity Mission(LDCM)[EB/OL].http://landsat.usgs.gov/landsat8.php.2013/09/18.

[13]USGS.Landsat Missions[EB/OL].http://landsat.usgs.gov/Landsat8_Using_Product.php.2013/05/17.

[14]Xu Hanqiu,Tang Fei.Analysis of New Characteristics of the First Landsat8 Image and Their Eco-environmental Significance[J].Acta Ecologica Sinica,2013,33(11):3249-3257.[徐涵秋,唐菲.新一代 Landsat系列卫星:Landsat8遥感影像新增特征及其生态环境意义[J].生态学报,2013,33(11):3249-3257.]

[15]Li Xue,Zhong Shiquan,Wang Lei,et al.Analysis of Spectral Characteristics of Fruit Trees based on HJ Satellite Remote Sensing Data[J].Xinjiang Agricultural Sciences,2011,48(11):1967-1973.[李雪,钟仕全,王蕾,等.基于HJ卫星遥感数据的林果光谱特征分析[J].新疆农业科学,2011,48(11):1967-1973.]

[16]Cheng Xi,Shen Zhanfeng,Zhou Yanan,et al.The Spectral Characteristics Separability Analysis of Spectral Data base of Typical Objects of Land Surface based on Bhattacharyya Distance[J].Remote Sensing Technology and Application,2013,28(3):707-713.[程熙,沈占峰,周亚男,等.基于Bhattacharyya距离的典型地物波谱特征差异性分析[J].遥感技术与应用,2013,28(3):707-713.]

[17]Mei Anxin,Peng Wanglu,Qin Qiming,et al.Introduction to Remote Sensing[M].Beijing:Higher Education Press,2001.[梅安新,彭望禄,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.]

[18]Freid M A,Brodley C E.Decision Tree Classification of Land Cover from Remotely Sensed Data[J].Remote Sensing of Environment,1997,(61):399-409.

[19]Guo Jian,Zhang Jixian,Zhang Yonghong,et al.Study of the Comparison of Land Cover Classification for Multi-temporal MODIS Images[J].Acta Geodaetica et Cartographica Sinica,2009,38(1):88-92.[郭健,张继贤,张永红,等.多时相MODIS影像土地覆盖分类比较研究[J].测绘学报,2009,38(1):88-92.]

[20]Yu Wenying,Feng Rui,Ji Ruipeng,et al.Advances in Rice Planting Area Extraction Technology based on MODIS Data[J].Journal of Meteorology and Enviroment,2011,27(2):56-61.[于文颖,冯锐,纪瑞鹏,等.基于MODIS数据的水稻种植面积提取研究进展[J].气象与环境学报,2011,27(2):56-61.]

[1] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[2] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[3] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[4] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[5] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[6] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[7] 王佳鹏,施润和,张超,刘浦东,曾毓燕. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6): 1056-1063.
[8] 杨涛,黄法融,李倩,白磊,李兰海. 新疆北部植被生长季NDVI时空变化及其与冬季降雪的关系[J]. 遥感技术与应用, 2017, 32(6): 1132-1140.
[9] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[10] 周金霖,马明国,肖青,闻建光. 西南地区植被覆盖动态及其与气候因子的关系[J]. 遥感技术与应用, 2017, 32(5): 966-972.
[11] 方雨晨,王培燕,田庆久. 不同覆盖度下小麦农田土壤对NDVI影响模拟分析[J]. 遥感技术与应用, 2017, 32(4): 660-666.
[12] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[13] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.
[14] 李洛晞,沈润平,李鑫慧,郭佳. 基于MODIS时间序列森林扰动监测指数比较研究[J]. 遥感技术与应用, 2016, 31(6): 1083-1090.
[15] 刘剑锋,张喜旺. 基于光谱和时相特征的夏玉米遥感识别[J]. 遥感技术与应用, 2016, 31(6): 1131-1139.