Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (5): 876-883    DOI: 10.11873/j.issn.1004-0323.2015.5.0876
模型与反演     
基于ASTER数据黑河中游植被含水量反演研究
闻熠1,2,3,黄春林1,2,卢玲1,顾娟4
(1.中国科学院寒区旱区环境与工程研究所 甘肃省遥感重点实验室,甘肃 兰州 730000;
2.中国科学院寒区旱区环境与工程研究所 黑河遥感试验研究站,甘肃 兰州 730000;
3.中国科学院大学,北京 100049
4.兰州大学西部环境与气候变化研究院,甘肃 兰州 730000)
Theretrieval of Vegetation Water Content based on ASTER Images in Middle of Heihe River Basin
Wen Yi1,2,3,Huang ChunLin1,2,Lu Ling1,Gu Juan4
(1.Key Laboratory of Remote Sensing of Gansu Province,Cold and Arid Regions Environmental and
Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China;
2.Heihe Remote Sensing Experimental Research Station,Cold and Arid Regions Environmental and
Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China;
3.University of Chinese Academy of Sciences,Beijing 100049,China;
4.MoE Key Laboratory of West China's Environmental System,
Lanzhou University,Lanzhou 730000,China)
 全文: PDF 
摘要:

植被含水量是影响植物生长的主要限制因子之一,也是衡量植被生理状态和形态结构的重要参数。应用遥感技术定量估测植被含水量,对于农业旱情监测\,作物产量估计和科学研究具有重要意义。基于2012年黑河生态水文遥感试验期间获得的6景ASTER遥感数据和同步观测的研究区生物量观测数据集,选取NDVI、RVI、SAVI和MSAVI 4种植被指数分别与单位面积内植被含水量的关系进行比较分析,建立了不同植被指数的植被含水量反演模型,并对反演结果进行了验证。研究结果表明:4种植被指数均与实测的植被含水量有较高的相关性(R2>0.846),利用MSAVI反演的植被含水量精度略优于其他3种指数,其均方根误差(RMSE)在0.794 kg/m2内。模型较为可靠,可以为大范围获取植被含水量信息提供有效方法。

关键词: 植被含水量植被指数遥感ASTER黑河流域    
Abstract:

Vegetation Water Content (VWC) is one of the main limiting factors of affecting growth of plants,which is an important parameter to character vegetation physiological status and morphology.Quantitative estimation of VWC by utilizing remote sensing technology has important significances for agricultural drought monitoring,crop yield estimation and scientific research.In this paper,six periods ASTER images and ground\|based measurements of VWC at 11 sampling sites are used to develop the empirical inversion model of VWC,which are obtained during the Heihe Watershed Allied Telemetry Experimental Research (Hi\|WATER) in 2012.The four types of vegetation indexes (NDVI,RVI,SAVI,and MSAVI) are adopted in this study.We analyze the relationship between different vegetation indexes and the measured VWC,then develop and validate these VI\|based empirical models for VWC retrieval.Results show that the correlation is very high between the measured VWC and the selected four vegetation indexes (R2>0.846).It indicates that we can retrieve VWC with high accuracy by using the four types of vegetation indexes.Among these vegetation indexes,the MSAVI\|based retrieval model achieves the highest accuracy and the root mean square error (RMSE) is only 0.794 kg/m2.The study also prove that the developed VWC retrieval model with MSAVI is reliable and an effective way for monitoring spatial variation of regional VWC.

Key words: Vegetation water content    Vegetation index    Remote sensing    ASTER    Heihe River Basin
收稿日期: 2014-10-07 出版日期: 2015-12-08
:  TP 79  
基金资助:

国家自然科学基金项目(41101387,91325106)和中国科学院“百人计划”项目 (29Y127D01) 资助。

通讯作者: 黄春林(1979-),男,宁夏青铜峡人,研究员,主要从事陆面数据同化研究。Email:huangcl@lzb.ac.cn。    
作者简介: 闻熠(1988-),男,湖北黄冈人,硕士研究生,主要从事定量遥感研究。Email:wenyi@lzb.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
闻熠
黄春林
卢玲
顾娟

引用本文:

闻熠,黄春林,卢玲,顾娟. 基于ASTER数据黑河中游植被含水量反演研究[J]. 遥感技术与应用, 2015, 30(5): 876-883.

Wen Yi,Huang ChunLin,Lu Ling,Gu Juan. Theretrieval of Vegetation Water Content based on ASTER Images in Middle of Heihe River Basin. Remote Sensing Technology and Application, 2015, 30(5): 876-883.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.5.0876        http://www.rsta.ac.cn/CN/Y2015/V30/I5/876

[1]Chuvieco E,Riano D,Aguado I,et al.Estimation of Fuel Moisture Content from Multitemporal Analysis of Landsat Thematic Mapper Reflectance Data:Applications in Fire Danger Assessment[J].International Journal of Remote Sensing,2002,23(11):2145-2162.

[2]Zhao Yunsheng,Du Jia,Song Kaishan,et al.A Study on Urban Thermal Field of Changchun City in Summer based on 〖JP〗Satellite Remote Sensing[J].Scientia Geographica Snica,2006,26(1):70-74.[赵云升,杜嘉,宋开山,等.基于卫星遥感的夏季长春市城区热场分析[J].地理科学,2006,26(1):70-74.]〖JP〗

[3]Wang Jie,Xu Ruisong,Ma Yueliang,et al.Method and Research Developments for Retrieval of Vegetable Water Content by Remote Sensing[J].Remote Sensing Information,2008,(1):5-8.[王洁,徐瑞松,马跃良,等.植被含水量的遥感反演方法及研究进展[J].遥感信息,2008,(1):5-8.]

[4]Levitt J.Responses of Plants to Environmental Stresses.Vol.Ⅱ:Water Radiation Salt and other Stresses[M].New York:Academic Press,1980.

[5]Han Xiaoyong.Quantitative Study on Estimation of Vegetation Water based on MODIS Data and Canopy Spectra of Vegetation[D].Xian:Chang’an University,2009,2-3.[韩晓勇.基于MODIS和地物光谱的植被水分定量遥感研究—以大兴安岭林区为例[D].西安:长安大学,2009:2-3.]

[6]Du Xiao.Research on Vegetation Leaf Water Monitoring by Remote Sensing and Spatio-temporal Character Analysis[D].Beijing:Institute of Remote Sensing Applications,Chinese Academy of Sciences,2006:4-6.[杜晓.植被叶面水遥感监测及其时空特征分析[D].北京:中国科学院遥感应用研究所,2006:4-6.]

[7]Zhang Youshui,Xie Yuanli.Vegetation Water Content Estimation Using NDVI and LSWI from MODIS Images[J].Scientia Geographica Snica,2008,28(1):72-76.[张友水,谢元礼.MODIS影像的NDVI和LSWI植被水分含量估算[J].地理科学,2008,28(1):72-76.]

[8]Makia M,Ishiahrab M,Tamura M.Estimation of Leaf Water Status to Monitor the Risk of Forest Fires by Using Remotely Sensed Data[J].Remote Sensing of Environment,2004,90(4):441-450.

[9]Inoue Y,Morinaga S,Shibayama M.Nondestructive Estimation of Water Status of Intact Crop Leaves based on Spectral Reflectance Measurements[J].Japan Journal of Crop Science,1993,62(3):462-469.

[10]Jordan C F.Derivation of Leaf Area Index from Quality of Light on the Forest Floor[J].Ecology,1969,50:663-666.

[11]Deering D W.Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors[D].Texas A&M University,College Station,TX,1978:338.

[12]Pan Qiang.Temporal and Spatial Variation of Normalized Difference Vegetation Index and Its Influencing Factor in Beijing[D].Haerbing:Northeast Forestry University,2012:3-5.[潘蔷.北京市植被指数变化及影响因素分析[D].哈尔滨:东北林业大学,2012:3-5.]

[13]Huete A R.A Soil Adjusted Vegetation Index (SAVI)[J].Remote Sensing of Environment,1988,(25):295-309.

[14]Kaufman Y J,Tanre D.Atmospherially Resistant Vegetation Index (ARVI) for EOS-MODIS[J].IEEE Transations on Geoscience and Remote Sensing,1992(30):261-270.

[15]Leprieur C,Kerr Y H,Mastorchio S,et al.Monitoring Vegetation Cover Across Semi-arid Regions:Comparison of Remote Observations from Various Scales[J].International Journal of Remote Sensing,2000,21(2):281-300.

[16]Qi J.A Modified Soil Adjusted Vegetation Index[J].Remote Sensing of Environment,1994,(48):119-126.

[17]Yu F,Zhao Y S.A New Semi-empirical Model for Soil Moisture Content Retrieval by ASAR and TM Data in Vegetation-covered Areas[J].Science China Earth Sciences,2011,doi:10.1007/s11430-011-4204-3.

[18]Zhang Jiahua.Vegetation and Ecological Remote Sensing[M].Beijing:Science Press,2010.[张佳华.植被与生态遥感[M].北京:科学出版社,2010.]

[19]Zhao Kai,Xu Jianbo,Zhao Zhizhong,et al.Cross Comparison of HJ-1A/B CCD and Landsat TM/ETM+ Multi-spectral Measurerments for NDVI,SAVI and EVI Vegetaton Index[J].Remote Sensing Technology and Application,2013,28(4):674-680.[赵凯,徐剑波,赵之重,等.HJ-1A/B CCD与Landsat TM/ETM+植被指数的交互比较[J].遥感技术与应用,2013,28(4):674-680.]

[20]Du Gang.The Study About Application and Vegetation Index Model of Vegetation based on EOS/MODIS[D].Wuhan:Huazhong University of Science and Technology,2005:10-11.[杜刚.基于EOS/MODIS的植被指数监测模型研究及应用[D].武汉:华中科技大学,2005:10-11.]

[21]Li Li.Study on the Vegetation Canopy Water based on Hyperspectral and Multi-angular Remote Sensing Information[D].Beijing:Chinese Academy of Meteorological Science,2008.[李莉.高光谱和多角度遥感提取植被冠层水分信息研究[D].北京:中国气象科学研究院,2008.]

[22]Wang L,Qu J J.NMDI:A Normalized Multi-band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing[J].Geophysical Research Letters,2007,34:L20405,doi:10.1029/2007GL031021.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[5] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[6] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[7] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[8] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[9] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[10] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[11] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[12] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[13] 林利斌,鲍艳松,左泉,房世波. 基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J]. 遥感技术与应用, 2018, 33(4): 750-758.
[14] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[15] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.