Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (5): 917-924    DOI: 10.11873/j.issn.1004-0323.2015.5.0917
模型与反演     
基于机载激光雷达数据的森林结构参数反演
李文娟1,赵传燕1,别强2,高婵婵1,高云飞1
(1.兰州大学草地农业生态系统国家重点实验室,甘肃 兰州 730000;
2.兰州大学西部环境教育部重点实验室,甘肃 兰州 730000)
Retrieval of the Forest Structural Parameters Using Airborne LiDAR Data
Li Wenjuan1,Zhao Chuanyan1,Bie Qiang2,Gao Chanchan1,Gao Yunfei1
(1.State Key Laboratory of Grassland and Agro-Ecosystems,School of Life Sciences,Lanzhou University,Lanzhou 730000,China;
2.Key Laboratory of Western China's Environmental Systems,Lanzhou University,Lanzhou 730000,China)
 全文: PDF 
摘要:

机载激光雷达(Light Detection And Ranging,LiDAR)技术对植被空间结构和地形的探测能力较强,在植被参数定量测量和反演方面具有显著优势。首先利用野外调查并结合高分辨率Geoeye-1影像数据,对黑河上游天涝池流域植被类型进行分类,提取研究区森林分布,然后结合0.5 m×0.5 m机载激光雷达(LiDAR)数据对森林结构参数(树高、冠幅、胸径和叶面积指数)进行反演,最后利用实际观测数据对反演结果进行验证。结果表明:机载激光雷达数据能够精确地反演森林结构参数,树高、冠幅、胸径和叶面积指数的实测值与估测值决定系数分别为0.98、0.84、0.57和0.73。本研究获得流域森林覆盖区域高精度树冠高度和叶面积指数空间分布图,同时分析了冠层高度和叶面积指数随高度的变化。本研究的结果为该流域分布式生态水文模型提供了重要的输入参数。

关键词: 机载激光雷达植被结构参数黑河上游遥感反演    
Abstract:

Forest structure parameters are very important inputs for ecological and hydrological models.The spatial distribution of these parameters is urgently needed by distributed eco-hydrological models.It is a great success in obtaining vegetation parameters using airborne LiDAR(Light Detection and Ranging),which has the powerful detection ability of forest spatial structure.This paper selected Tianlaochi catchment of the upper reaches of Heihe River as the study area and forests as study object in the study area.First,we derived a vegetation classification map by high resolution images data(Geoeye-1)in the study area.And then,forest structural parameters(i.e.,canopy height,crown width,diameter at breast height(DBH),leaf area index(LAI))were retrieved based on airborne LiDAR data.Finally,the retrieved results were validated by field investigation.The results show that it is a good way to estimate the forest structural parameters using LiDAR data.There were good correlations between the measured value and estimated value(i.e.,canopy height,crown width,and LAI).Correlation coefficients(R2)were 0.98,0.84,and 0.73,respectively.In addition,we analyzed the variation of average canopy height and LAI with the increase of elevation.This study could draw the conclusion that airborne LiDAR technology is better way to retrieve forest structural parameters than passive remote sensing,but it still needs to be improved.The retrieved parameters will provide inputs for the distributed eco\|hydrological model built in the subsequent research.

Key words: Airborne LiDAR    Forest structure parameters    The upper reaches of Heihe River    Remote sensing retrieval
收稿日期: 2014-05-16 出版日期: 2015-12-08
:  TP 79  
基金资助:

国家自然科学基金重点项目(91025015)。

通讯作者: 赵传燕(1963-),女,山东菏泽人,教授,主要从事旱区生态水文及地理信息系统与遥感技术应用等方面的研究。Email:nanzhr@lzb.ac.cn。    
作者简介: 李文娟(1989-),女,甘肃天水人,硕士研究生,主要从事生态水文学研究。Email:liwj12@lzu.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李文娟
赵传燕
别强
高婵婵
高云飞

引用本文:

李文娟,赵传燕,别强,高婵婵,高云飞. 基于机载激光雷达数据的森林结构参数反演[J]. 遥感技术与应用, 2015, 30(5): 917-924.

Li Wenjuan,Zhao Chuanyan,Bie Qiang,Gao Chanchan,Gao Yunfei. Retrieval of the Forest Structural Parameters Using Airborne LiDAR Data. Remote Sensing Technology and Application, 2015, 30(5): 917-924.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.5.0917        http://www.rsta.ac.cn/CN/Y2015/V30/I5/917

[1]Yang Bogang,Feng Zhongke,Luo Xu,et al.Application and Accuracy Analysis of Forest Height Measurement with LiDAR Technology[J].Journal of Beijing Forestry University,2007,29(Sup.2):78-81.[杨伯钢,冯仲科,罗旭,等.LiDAR 技术在树高测量上的应用与精度分析[J].北京林业大学学报,2007,29(增刊2):78-81.]

[2]Chen Xinfang,An Shuqing,Chen Jingming,et al.A Review on Forest Ecosystem Biophysical Parameter Retrieval from Remotely Sensed Data[J].Chinese Journal of Ecology,2005,24(9):1074 1079.[陈新芳,安树青,陈镜明,等.森林生态系统生物物理参数遥感反演研究进展[J].生态学杂志,2005,24(9):1074-1079.]

[3]Schlerf M,Atzberger C,Hill J.Remote Sensing of Forest Biophysical Variables Using HyMap Imaging Spectrometer Data[J].Remote Sensing of Environment,2005,95(2):177-194.

[4]Chen J M,Liu J,Sylvain G,et al.Multi-angular Optical Remote Sensing for Assessing Vegetation Structure and Carbon Absorption[J].Remote Sensing of Environment,2003,83:516-525.

[5]Wessels K J,De Fries R S,Dempewolf J,et al.Mapping Regional Land Cover with MODIS Data for Biological Conservation:Examples from the Greater Yellowstone Ecosystem,USA and Pará State,Brazil[J].Remote Sensing of Environment,2004,92(1):67-83.

[6]Scott N A,Coops N C,White J D.Forest Fragmentation Effects on Simulated Biomass Accumulation Using Remotely-sensed Data with Varying Spatial Resolution[C]//AGU Fall Meeting Abstracts.2001,1:0152.

[7]Gilabert M A,Garcιa-Haro F J,Melia J.A Mixture Modeling Approach to Estimate Vegetation Parameters for Heterogeneous Canopies in Remote Sensing[J].Remote Sensing of Environment,2000,72(3):328-345.

[8]Chen Xinfang,Chen Jingming,An Shuqing,et al.Comparison of Different Atmospheric Correction Models in Their Effects on Landsat TM Estimation of Forest Leaf Area Index[J].Chinese Journal of Ecology,2006,25(7):769-773.[陈新芳,陈镜明,安树青,等.不同大气校正方法对森林叶面积指数遥感估算影响的比较[J].生态学杂志,2006,25(7):769-773.]

[9]Myneni R B,Maggion S,Iaquinta J,et al.Optical Remote Sensing of Vegetation:Modeling,Caveats,and Algorithms[J].Remote Sensing of Environment,1995,51(1):169-188.

[10]Wulder M.Optical Remote-sensing Techniques for the Assessment of Forest Inventory and Biophysical Parameters[J].Progress in Physical Geography,1998,22(4):449-476.

[11]Lim K,Treitz P,Wulder M,et al.LiDAR Remote Sensing of Forest Structure[J].Progress in Physical Geography,2003,27(1):88-106.

[12]Blaschke T.Object based Image Analysis for Remote Sensing[J].ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(1):2-16.

[13]Cao C,Bao Y,Xu M,et al.Retrieval of Forest Canopy Attributes based on a Geometric-optical Model Using Airborne LiDAR and Optical Remote-sensing Data[J].Intemational Jounal of Remote Sensing,2012,33(3):692-709.

[14]Van L M,Nieuwenhuis M.Retrieval of Forest Structural Parameters Using LiDAR Remote Sensing[J].European Journal of Forest Research,2010,29(129):749-770.

[15]Simonson W D,Allen H D,Coomes D A.Remotely Sensed Indicators of Forest Conservation Status:Case Study from a Natura 2000 Site in Southern Portugal[J].Ecological Indicators,2013,24:636-647.

[16]Chen Q,Laurin G V,Battles J J,et al.Integration of Airborne Lidar and Vegetation Types Derived from Aerial Photography for Mapping Aboveground Live Biomass[J].Remote Sensing of Environment,2012,121:108-117.

[17]García M,Ria o D,Chuvieco E,et al.Estimating Biomass Carbon Stocks for a Mediterranean Forest in Central Spain Using LiDAR Height and Intensity Data[J].Remote Sensing of Environment,2010,114(4):816-830.

[18]Wang Shugong,Kang Ersi,Li Xin.Progress and Perspective of Distributed Hydrological Models[J].Journal of Glaciology and Geocryology,2004,26(1):61-65.[王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土,2004,26(1):61-65.]

[19]Peng huanhua,Zhao Chuanyan,Feng Zhaodong,et al.Extracting the Canopy Structure Parameters Using Hemispherical Photography Method[J].Acta Ecologica Sinica,2011,31(12):3376-3383.[彭焕华,赵传燕,冯兆东,等.利用半球图像法提取植被冠层结构特征参数[J].生态学报,2011,31(12):3376-3383.]

[20]Liu Xingcong.Picea Crassifolia[M].Lanzhou:Lanzhou University Press,1992.[刘兴聪.青海云杉[M].兰州:兰州大学出版社,1992.]

[21]Bonan G B.Importance of Leaf Area Index and Forest Type When Estimating Photosynthesis in Boreal Forests[J].Remote Sensing of Environment,1993,43(3):303-314.

[22]Morsdorf F,Nichol C,Malthus T,et al.Assessing Forest Structural and Physiological Information Content of Multi-spectral LiDAR Waveforms by Radiative Transfer Modelling[J].Remote Sensing of Environment,2009,113(10):2152-2163.

[23]Rosette J,Suárez J,Nelson R,et al.LiDAR Remote Sensing for Biomass Assessment[C]//Remote Sensing of Biomass—Principles and Applications.Rijeka:InTech,2012,24.

[24]Andersen J,Dybkjaer G,Jensen K H,et al.Use of Remotely Sensed Precipitation and Leaf Area Index in a Distributed Hydrological Model[J].Journal of Hydrology,2002,264(1):34-50.

[25]Vose J M,Clinton B D,Sullivan N H,et al.Vertical Leaf Area Distribution,Light Transmittance,and Application of the Beer-Lambert Law in four Mature Hardwood Stands in the Southern Appalachians[J].Canadian Journal of Forest Research,1995,25(6):1036-1043.

[26]Solberg S,Brunner A,Hanssen K H,et al.Mapping LAI in a Norway Spruce Forest Using Airborne Laser Scanning[J].Remote Sensing of Environment,2009,113(11):2317-2327.

[27]Coops N C,Hilker T,Wulder M A,et al.Estimating Canopy Structure of Douglas-fir Forest Stands from Discrete-return LiDAR[J].Trees,2007,21(3):295-310.

[28]Pang Yong,Zhao Feng,Li Zengyuan,et al.Forest Height Inversion Using Airborne LiDAR Technology[J].Journal of Remote Sensing,2008,12(1):152-158.[庞勇,赵峰,李增元,等.机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158.]

[29]Lai Geying,Zeng Xianggui,Liu Ying,et al.Retrieving Leaf Area Index and Extinction Coefficient of Dominated Vegetation Canopy Cover in Meijiang Watershed of China Using Image-fusion and Landsat ETM Data[J].Remote Sensing Technology and Application,2013,28(4):697-706.[赖格英,曾祥贵,刘影,等.基于ETM和图像融合的优势植被冠层叶面积指数和消光系数的遥感反演[J].遥感技术与应用,2013,28(4):697-706.]

[30]Peng Huanhua,Zhao Chuanyan,Shen Weihua,et al.Modeling Rainfall Canopy Interception of Picea Crassifolia Forest in Northern Slope of Qilian Mountains:A Case of Pailougou Catchment[J].Arid Land Geography,2010,33(4):110-116.[彭焕华,赵传燕,沈卫华,等.祁连山北坡青海云杉林冠对降雨截留空间模拟——以排露沟流域为例[J].干旱区地理,2010,33(4):100-106.]

[31]Zhao Chuanyan,Shen Weihua,Peng Huanhua.Methods for Determining Canopy Leaf area Index of Picea Crassifolia forest in Qilian Mountains,China[J].Chinese Journal of Plant Ecology,2009,33(5):860-869.[赵传燕,沈卫华,彭焕华.祁连山区青海云杉林冠层叶面积指数的反演方法[J].植物生态学报,2009,33(5):860-869.]

[32]Hovi A,Korpela I.Real and Simulated Waveform-recording LiDAR Data in Juvenile Boreal Forest Vegetation[J].Remote Sensing of Environment,2014,140:665-678.

[33]Gao Shuai,Niu Zheng,Wu Minquan.The Neural Network Algorithm for Estimating Plantion Forest Leaf Area Index based on ENVISAT/ASAR[J].Remote Sensing Technology and Application,2013,28(2):205-211.[高帅,牛铮,邬明权.基于ENVISAT/ASAR的神经网络反演人工林叶面积指数研究[J].遥感技术与应用,2013,28(2):205-211.]

[34]Ma H,Song J,Wang J,et al.Improvement of Spatially Continuous Forest LAI Retrieval by Integration of Discrete Airborne LiDAR and Remote Sensing Multi-angle Optical Data[J].Agricultural and Forest Meteorology,2014,189:60-70.

[35]Zhao C Y,Nan Z R,Cheng G D,et al.GIS-assisted Modelling of the Spatial Distribution of Qinghai Spruce(Picea Crassifolia)in the Qilian Mountains,Northwestern China based on Biophysical Parameters[J].Ecol Model,2006,191:487-500.

[36]Wang Jinye,Yu Pengtao,Wang Yanhui,et al.Studies on Eco-hydrological Process:A Example of Water Conservation Forest in Qilian Mountains〖JP2〗[M].Beijing:Science Press,2008:28.[王金叶,于澎涛,王彦辉,等.森林生态水文过程研究——以甘肃祁连山水源涵养林为例[M].北京:科学出版社,2008:28.]〖JP〗

[37]Zhang Hu,Wen Yali,Ma Ii,et al.The Climate Features and Regionalization of Vertical Climatic Zones in the Northern Slope of Qilian Mountains[J].Journal of Mountain Science,2001,19(6):497-502.[张虎,温娅丽,马力,等.祁连山北坡中部气候特征及垂直气候带的划分[J].山地学报,2001,19(6):497-502.]

[38]Xi Jianchao,Zhang Hongqi,Zhang Zhiqiang.Retrieving Effec〖JP2〗tive Leaf Area Index of Conifer Forests Using Landsat TM Images[J].Journal of Beijing Forestry University,2004,26(6):36-39.[席建超,张红旗,张志强.应用遥感数据反演针叶林有效叶面积指数[J].北京林业大学学报,2004,26(6):36-39.]〖JP〗

[39]Zhao Chuanyan,Bie Qiang,Peng Huanhua.Analysis of the Niche Space of Picea Crassifoliaon the Northern Slope of Qilian Mountains[J].Acta Geographica Sinica,2010,65(1):113-121.[赵传燕,别强,彭焕华.祁连山北坡青海云杉林生境特征分析[J].地理学报,2010,65(1):113-121.]

[40]Zhang Lijie,Jiang Zhirong.Fractal Properties of Spatial Pattern of Picea Crassifolia Population at Different Altitudes[J].Journal of Northwest Forestry University,2006,21(2):64-66.[张立杰,蒋志荣.青海云杉种群分布格局沿海拔梯度分形特征的变化[J].西北林学院学报,2006,21(2):64-66.]

[41]Peng Shouzhang,Zhao Chuanyan,Xu Zhonglin,et al.Potential Distribution of Qinghai Spruce and Assessment of Its Growth Status in the Upper Reaches of the Heihe River in the Qilian Mountains of China[J].Chinese Journal of Plant Ecology,2011,35(6):605-614.[彭守璋,赵传燕,许仲林,等.黑河上游祁连山区青海云杉生长状况及其潜在分布区的模拟[J].植物生态学报,2011,35(6):605-614.]

[42]Lefsky M A,Cohen W B,Parker G G,et al.LiDAR Remote Sensing for Ecosystem Studies LiDAR,an Emerging Remote Sensing Technology that Directly Measures the Three-dimensional Distribution of Plant Canopies,Can Accurately Estimate Vegetation Structural Attributes and Should be of Particular Interest to Forest,Landscape,and Global Ecologists[J].BioScience,2002,52(1):19-30.

[1] 虢韬,沈平,时磊. 机载LiDAR快速定位高压电塔方法研究[J]. 遥感技术与应用, 2018, 33(3): 530-535.
[2] 汤玉明,邓孺孺,刘永明,熊龙海. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018, 33(1): 25-34.
[3] 梁茜茜,张汉德,孙根云,王鹏. 基于机载激光雷达数据的海岸带水域提取方法[J]. 遥感技术与应用, 2018, 33(1): 136-142.
[4] 吴仪,邓孺孺,秦雁,梁业恒,熊龙海. 新丰江水库叶绿素浓度时空分布特征的遥感反演研究[J]. 遥感技术与应用, 2017, 32(5): 825-834.
[5] 秦海明,王成,习晓环,聂胜. 机载激光雷达测深技术与应用研究进展[J]. 遥感技术与应用, 2016, 31(4): 617-624.
[6] 陈瑜丽,沈芳. 长江口及邻近海域悬浮颗粒物对叶绿素a遥感反演算法的影响分析[J]. 遥感技术与应用, 2016, 31(1): 126-133.
[7] 董淑英,晋锐,亢健,李大治. ASAR GM后散时间序列数据估算黑河上游地表土壤水分[J]. 遥感技术与应用, 2015, 30(4): 667-676.
[8] 穆喜云,张秋良,刘清旺,庞勇,胡凯龙. 基于激光雷达的大兴安岭典型森林生物量制图技术研究[J]. 遥感技术与应用, 2015, 30(2): 220-225.
[9] 刘婧怡,汤旭光,常守志,贾明明,董张玉,邵田田,丁智. 森林叶面积指数遥感反演模型构建及区域估算[J]. 遥感技术与应用, 2014, 29(1): 18-25.
[10] 曹林,许子乾,代劲松,王靖琦,羌鑫林,佘光辉. 基于LiDAR和CCD数据的地形与建筑提取方法优化及精度评价[J]. 遥感技术与应用, 2014, 29(1): 130-137.
[11] 黎荆梅,周梅,李传荣. 阵列推扫式机载激光雷达三维点云解算方法研究[J]. 遥感技术与应用, 2013, 28(6): 1033-1038.
[12] 赖格英,曾祥贵,刘影,张玲玲,易发钊,潘瑞鑫,盛盈盈. 基于ETM和图像融合的优势植被冠层叶面积指数和消光系数的遥感反演[J]. 遥感技术与应用, 2013, 28(4): 697-706.
[13] 唐爽,陈蜀江. 基于CBERS-2卫星数据的艾比湖浮游植物生物量的反演研究[J]. 遥感技术与应用, 2013, 28(3): 543-548.
[14] 陈瀚阅,牛铮,毕海波. MODIS数据地表温度反演劈窗算法比较[J]. 遥感技术与应用, 2013, 28(2): 174-181.
[15] 李丽丽,张艳红,邢立新,翟羽娟,董连英. 扎龙湿地龙泡子水深的高光谱建模研究[J]. 遥感技术与应用, 2013, 28(2): 212-216.