Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (5): 925-931    DOI: 10.11873/j.issn.1004-0323.2015.5.0925
模型与反演     
利用风云卫星MERSI数据反演叶面积指数的研究
张文智1,3,许文波1,范向杰2,樊香所1,3,吴传赏1,3,范锦龙3
(1.电子科技大学资源与环境学院,四川 成都 611731;2.山西省观象台,山西 太原 030006;
3.国家卫星气象中心,北京 10081)
Inversion of Leaf Area Index Using the MERSI Data of the Feng Yun Satellite
Zhang Wenzhi1,3,Xu Wenbo1,Fan Xiangsuo1,3,Wu Chuanshang1,3,Fan Xiangjie2,Fan Jinlong3
(1.University of Electronic Science and Technology of China,Chengdu 611731,China;
2.Observatory of Shanxi,Taiyuan 03006,China;
3.National Satellite Meteorological Center,Beijing 100081,China)
 全文: PDF 
摘要:

风云三号A星上搭载的中分辨率成像光谱仪(Medium Resolution Imaging Spectrometer)MERSI从2008年5月底开始对地球观测,其中5个波段250 m分辨率的数据包含了丰富的植被信息,在全球同类传感器数据中独具特色,在其基础上反演的陆表植被数据产品目前还不多见。利用2013年生长季在河北固城观测获取的冬小麦光谱数据,结合MERSI 250 m数据计算的NDVI值,建立二者NDVI之间的线性转换模型Y=1.1458X+0.1916;同时利用地物光谱NDVI与实测叶面积指数构建了NDVI-LAI指数模型Y=0.0899e4.459X;然后,利用MERSI 250 m数据反演出华北太行山前平原区冬小麦的叶面积指数,经与大田观测的叶面积指数以及同期MODIS的叶面积指数产品对比验证,结果表明:反演的MERSI-LAI与实际观测叶面积指数接近且具有很好的线性关系,其空间分布与MODIS的叶面积指数相近,但MODIS\|LAI数值明显偏小。

关键词: 风云卫星MERSILAINDVI反演模型    
Abstract:

The data of the Medium Resolution Imaging Spectrometer (MERSI) on board FY\|3A were made available since the end of 2008.It provides the data with five bands at 250 meter resolution,which captures abundant vegetation information and is a unique data source of the similar sensors in the world.However,few literatures reported the utilization of these data.In this paper,we used the spectral data during the growing season of winter wheat in Gucheng experiment site,Hebei province in 2013,to calculate the vegetation index,and combined with the NDVI data which calculated from the 250 meter MERSI data,to establish a linear transformation model Y=1.1458X+0.1916 between the two NDVIs.At the same time,we used the spectral NDVI and the measured leaf area index to establish a NDVI\|LAI conversion model Y=0.0899e4.459X.Then,we used the 250 meter MERSI data to retrieve the leaf area index for Taihang piedmont area of winter wheat.Finally we compared the results with the observed LAI in the field and the MODIS\|LAI product in the same period.The result shows that,there is a good exponent relationship between the leaf area index retrieved from MERSI\|NDVI data and the observed LAI in the field,and then its spatial distribution was similar with MODIS-LAI,but MODIS\|LAI was significantly smaller.

Key words: Fengyun Satellite    MERSI    LAI    NDVI    Inversion model
收稿日期: 2014-01-17 出版日期: 2015-12-08
:  TP 79  
基金资助:

国家自然科学基金项目(41271429)。

通讯作者: 范锦龙(1975-),男,山西偏关人,副研究员,主要从事地球观测研究。Email:fanjl@cma.gov.cn。    
作者简介: 张文智(1988-),男,江苏扬州人,硕士研究生,主要从事农业遥感研究。Email:zwz138698@sina.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张文智
许文波
范向杰
樊香所
吴传赏
范锦龙

引用本文:

张文智,许文波,范向杰,樊香所,吴传赏,范锦龙. 利用风云卫星MERSI数据反演叶面积指数的研究[J]. 遥感技术与应用, 2015, 30(5): 925-931.

Zhang Wenzhi,Xu Wenbo,Fan Xiangsuo,Wu Chuanshang,Fan Xiangjie,Fan Jinlong. Inversion of Leaf Area Index Using the MERSI Data of the Feng Yun Satellite. Remote Sensing Technology and Application, 2015, 30(5): 925-931.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.5.0925        http://www.rsta.ac.cn/CN/Y2015/V30/I5/925

[1]Zhao Juan,Huang Wenjiang,Zhang Yaohong,et al.Inversion of Leaf Area Index during Different Growth Stages in Winter Wheat[J].Spectroscopy and Spectral Analysis,2013,33(9):2546-2552.[赵娟,黄文江,张耀鸿,等.冬小麦不同生育时期叶面积指数反演方法[J].光谱学与光谱分析,2013,33(9):2546-2552.]

[2]Xia Tian,Wu Wenbin,Zhou Qingbo,et al.Comparison of Two Inversion Methods for Winter Wheat Leaf Area Index based on Hyperspectral Remote Sensing[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2013,29(3):139-147.[夏天,吴文斌,周清波,等.冬小麦叶面积指数高光谱遥感反演方法对比[J].农业工程学报,2013,29(3):139-147.]

[3]Wang Xiuzhen,Huang Jingfeng,Li Yunmei,et al.The Study on Multispectral Remote Sensing Estimation Models about LAI of Rice[J].Remote Sensing Technology and Application,2003,18(4):57-65.[王秀珍,黄敬峰,李云梅,等.水稻叶面积指数的多光谱遥感估算模型研究[J].遥感技术与应用,2003,18(4):57-65.] 

[4]Li Fengxiu,Zhang Bai,Song Kaishan,et al.Research and Analysis of the Correlation between Hyperspectral Vegetation Index and Leaf Area Index[J].Remote Sensing Technology and Application,2007,22(5):586-594.[李凤珍,张柏,宋开山,等.玉米叶面积指数与高光谱植被指数关系的研究[J].遥感技术与应用,2007,22(5):586-594.] 

[5]Fan Wenjie,Yan Binyan,Xu Xiru,et al.Crop Area and Leaf Area Index Simultaneous Retrieval based on Spatial Scaling Transformation[J].Science China:Earth Sciences,2010,40(12):1725-1732.[范闻捷,闫彬彦,徐希孺,等.玉米叶尺度转换规律与同步反演作物播种面积和叶面积指数[J].中国科学:地球科学,2010,40(12):1725-1732.]

[6]Fan Wenjie,Ge Yingying,Xu Xiru,et al.The Spatial Scaling Effect of the Discrete-canopy Effective Leaf Area Index Retrieved by Remote Sensing[J].Science China:Earth Sciences,2013,43:280-286.[范闻捷,盖颖颖,徐希孺,等.遥感反演离散植被有效叶面积指数的空间尺度效应[J].中国科学:地球科学,2013,43:280-286.]

[7]Sun Pengsen,Liu Shirong,Liu Jingtao,et al.Derivation and Validation of Leaf Area Index Maps Using NDVI Data of Different Resolution Satellite Imageries[J].Acta Ecologica Sinica,2006,26(11):3826-3834.[孙鹏森,刘世荣,刘京涛,等.利用不同分辨率卫星影像的 NDVI 数据估算叶面积指数 (LAI)[J].生态学报,2006,26(11):3826-3834.]

[8]Haboudane D,Miller J R,Pattey E,et al.Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies:Modeling and Validation in the Context of Precision Agriculture[J].Remote Sensing of Environment,2004,90(3):337-352.

[9]Lai Geying,Zeng Xianggui,Liu Ying,et al.Retrieving Leaf Area Index and Extinction Coefficient of Dominated Vegetation Canopy Cover in Meijiang Watershed of China Using Image-fusion and Landsat ETM Data[J].Remote Sensing Technology and Application,2013,28(4):697-706.[赖格英,曾祥贵,刘影,等.基于ETM和图像融合的优势植被冠层叶面积指数和消光系数的遥感反演[J].遥感技术与应用,2013,28(4):697-706.]

[10]Liu Yuqing,Sha Jinming,Yu Tao,et al.Comparing the Performance of Broad-band and Narrow-band Vegetation Indices for Estimation of Grass LAI[J].Remote Sensing Technology and Application,2014,29(4):587-593.[刘玉琴,沙晋明,余涛,等.基于宽波段和窄波段植被指数的草地LAI反演对比研究[J].遥感技术与应用,2014,29(4):587-593][11]Luo Shezhou,Cheng Feng,Wang Fangjian,et al.Leaf Area Index Inversion based on TM in Linzhi,Tibet[J].Remote Sensing Technology and Application,2012,27(5):740-745.[骆社周,程峰,王方建,等.基于TM遥感数据的西藏林芝地区叶面积指数反演[J].遥感技术与应用,2012,27(5):740-745.]

[12]Yin Fang,Jiang Dong,Liu Lei,et al.Using Data of HJ-1A HSI for Retrieving Grassland Leaf Area Index[J].Remote Sensing Technology and Application,2011,26(3):360-364.[尹芳,江东,刘磊,等.基于环境星HSI影像的草地叶面积指数反演[J].遥感技术与应用,2011,26(3):360-364.] 

[13]Yao Yanjuan,Chen Liangfu,Liu Qinhuo,et al.Inversion and Validation of Leaf Area Index based on the Spectral & Knowledge Database Using MODIS Data[J].Journal of Remote Sensing,2006,10(6):869-878.[姚延娟,陈良富,柳钦火,等.基于波谱知识库的 MODIS叶面积指数反演及验证[J].遥感学报,2007,10(6):869-878.]

[14]Tian Y,Woodcock C E,Wang Y,et al.Multi-scale Analysis and Validation of the MODIS LAI Product:II.Sampling Strategy[J].Remote Sensing of Environment,2002,83(3):431-441.

[15]Yang Jun,Dong Chaohua,et al.The New Generation Fengy-un Polar Orbiting Meteorological Satellite Products and Applictions[M].Beijing:Science Press,2011.[杨军,董超华,等.新一代风云极轨气象卫星业务产品及应用[M].北京:科学出版社,2011.]

[16]Best R G,Harlan J C.Spectral Estimation of Green Leaf Area Index of Oats[J].Remote Sensing of Environment,1985,17(13):27-36.

[17]Price J C,Bausch J C.Leaf Area Index Estimation from Visible and Near-infrared Reflectance Data[J].Remote Sensing of Environment,1995,52(8):55-65.

[18]Du Chunyu,Fan Wenyi.Research and Analysis of Correlation Between Leaf Area Index and Vegetation Index[J].Forestry Survey and Plan,2013,(2):77-80.[杜春雨,范文义.叶面积指数与植被指数关系研究[J].林业勘查设计,2013,(2):77-80.]

[19]Epstein H E,Walker D A,Kuss P,et al.Biomass-NDVI-LAI Patterns and Relationships on the Yamal Peninsula,Russia[J].Remote Sensing of Environment,2008,75(3):678-715.

[1] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[2] 范锦龙,张晔萍,李昌宝,许文波,刘少杰,薛飞,覃志豪. 风云卫星中分辨率遥感数据几何定位误差分析[J]. 遥感技术与应用, 2018, 33(4): 621-627.
[3] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[4] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[5] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[6] 单天婵,王长林. 基于显著性增强的过火区域提取研究[J]. 遥感技术与应用, 2018, 33(3): 536-544.
[7] 张雅,尹小君,王伟强. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.
[8] 王佳鹏,施润和,张超,刘浦东,曾毓燕. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6): 1056-1063.
[9] 杨涛,黄法融,李倩,白磊,李兰海. 新疆北部植被生长季NDVI时空变化及其与冬季降雪的关系[J]. 遥感技术与应用, 2017, 32(6): 1132-1140.
[10] 吴仪,邓孺孺,秦雁,梁业恒,熊龙海. 新丰江水库叶绿素浓度时空分布特征的遥感反演研究[J]. 遥感技术与应用, 2017, 32(5): 825-834.
[11] 李颖,陈怀亮,李耀辉. 利用夏玉米端元丰度估算夏玉米种植面积的研究[J]. 遥感技术与应用, 2017, 32(5): 913-920.
[12] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[13] 周金霖,马明国,肖青,闻建光. 西南地区植被覆盖动态及其与气候因子的关系[J]. 遥感技术与应用, 2017, 32(5): 966-972.
[14] 周爱明,鲍艳松,魏鸣,陆其峰. FY-3近红外与热红外资料大气柱水汽总量反演对比[J]. 遥感技术与应用, 2017, 32(4): 651-659.
[15] 方雨晨,王培燕,田庆久. 不同覆盖度下小麦农田土壤对NDVI影响模拟分析[J]. 遥感技术与应用, 2017, 32(4): 660-666.