Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (6): 1085-1094    DOI: 10.11873/j.issn.1004-0323.2015.6.1085
积雪遥感专栏     
冰沟流域积雪面积比例与雪水当量关系初探
孙建勇1,2,3,车 涛1,2,段克勤1,戴礼云1,2
(1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州730000;
2.中国科学院黑河遥感试验研究站,甘肃兰州730000;
3.国家测绘地理信息局第三航测遥感院,四川 成都610100)
Study of the Relationship between Snow Cover Fraction and Snow Water Equivalent in Binggou Watershed
Sun Jianyong1,2,3,Che Tao1,2,Duan Keqing1,Dai Liyun1,2
(1.Cold and Arid Regions Environmental and Engineering Research Institute,
Chinese Academy of Sciences,Lanzhou 730000,China;
2.Heihe Remote Sensing Experimental Research Station,
Chinese Academy of Sciences,Lanzhou 730000,China;
3.The Third Institute of Photogrammetry and Remote Sensing,National Administration of
Surveying,Mapping and Geoinformation,Chengdu 610100,China)
 全文: PDF(5131 KB)  
摘要:

像元尺度上积雪面积比例与雪水当量的关系是将积雪遥感面积数据引入水文模型的有效手段。以冰沟流域为例,利用合成孔径雷达ENVISAT-ASAR数据反演得到积雪面积、雪水当量信息,分析了500 m像元尺度上积雪面积比例与雪水当量的关系。结果表明:①在积雪面积比例未达到全覆盖饱和状态,雪水当量和积雪面积比例呈正相关关系,积雪面积比例控制着雪水当量的最大值,但由于受到地形的影响,关系不显著;②当考虑地形因子影响,即将坡度、坡向、海拔、积雪面积比例与雪水当量进行多元线性回归,回归系数的显著性水平均小于0.05,相关系数(r)达到0.841。因此,在高分辨率地形因子已知的情况下,结合遥感积雪数据,可建立良好的积雪面积比例和雪水当量之间的关系,有利于高分辨率积雪面积比例数据在寒区分布式水文模型中的应用。

关键词: 遥感积雪衰减曲线积雪面积雪水当量合成孔径雷达    
Abstract:

The relationship between snow cover fraction and snow water equivalent at pixel scale is an effective approach of applying high resolution optical remote sensing data in hydrological models.Binggou watershed was selected as the study area in this paper this paper.Retrieved snow cover fraction (SCF) and snow water equivalent (SWE) information through the ENVISAT-ASAR data,thus resamples the SCF and SWE data in 500m resolution and analyzes the relation between SCF and SWE.The results show that:①Without the concern of topographic factors,snow cover fraction and snow water equivalent is a discrete distribution,however,snow cover fraction determines the maximum value of snow water equivalent,and the average snow water equivalent improves with the increased snow cover fraction;②When considering topographic factors,the multifactor regression analysis of snow water equivalent and snow cover fraction,slope,aspect,altitude show that the regression coefficient significance level is less than 0.05,and the correlation coefficient reaches at 0.841.Therefore,snow cover fraction can be converted into snow water equivalent according to the analysis of specific snow depletion curve,thich provides a solution to fuse the remote sensing data into cold region hydrological model.

Key words: Remote sensing    Snow depletion curve    Snow Cover Fraction(SCF)    Snow Water Equivalent(SWE)    SAR
收稿日期: 2014-09-25 出版日期: 2016-01-25
:  TP 79  
基金资助:

国家863计划项目(2012AA12A303),中国科学院西部行动计划项目(KZCX2-XB3-15),国家自然科学基金项目(41271356)共同资助。

通讯作者: 车涛(1976-),男,陕西周至人,研究员,主要从事冰冻圈遥感研究。Email:chetao@lzb.ac.cn。    
作者简介: 孙建勇(1990-),男,四川广元人,硕士研究生,主要从事冰冻圈遥感研究。Email:gysunjianyong@gmail.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙建勇
车 涛
段克勤
戴礼云

引用本文:

孙建勇,车 涛,段克勤,戴礼云. 冰沟流域积雪面积比例与雪水当量关系初探[J]. 遥感技术与应用, 2015, 30(6): 1085-1094.

Sun Jianyong,Che Tao,Duan Keqing,Dai Liyun. Study of the Relationship between Snow Cover Fraction and Snow Water Equivalent in Binggou Watershed. Remote Sensing Technology and Application, 2015, 30(6): 1085-1094.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.6.1085        http://www.rsta.ac.cn/CN/Y2015/V30/I6/1085

[1]Li Xin,Che Tao.A Review on Passive Microwave Remote Sensing of Snow Cover[J].Journal of Glaciology and Geocryology,2007,29(3):487-496.[李新,车涛.积雪被动微波遥感研究进展[J].冰川冻土,2007,29(3):487-496.]

[2]Wang J,Li H Y,Hao X H.Responses of Snowmelt Runoff to Climatic Change in an Inland River Basin,Northwestern China,Over the Past 50 Years[J].Hydrology and Earth System Sciences,2010,14:1979-1987.

[3]Li Hongyi,Wang Jian.Key Research Topics and Their Advances on Modeling Snow Hydrological Process[J].Journal of Glaciology and Geocryology,2013,35(2):430-437.[李弘毅,王建.积雪水文模拟中的关键问题及其研究进展[J].冰川冻土,2013,35(2):430-437.]

[4]Dai L Y,Che T,Ding Y J.Inter-calibrating SMMR,SSM/I and SSMI/S Data to Improve the Consistency of Snow-depth Products in China[J].Remote Sensing,2015,7:7212-7230.doi:10.3390/rs70607212.

[5]Che Tao.Impacts ob Passive Microwave Remote Sensing of Snow from Heterogeneities of Snow Properties[J].Remote Sensing Technology and Application,2013,28(1):27-33.[车涛.积雪属性非均匀性对被动微波遥感积雪的影响[J].遥感技术与应用,2013,28(1):27-33.]

[6]Zheng Lei,Zhang Tingjun,Che Tao,et al.Evaluation of Snow Depth Products Derived from Passive Microwave Satellite Remote Sensing Data Using Ground-based Snow Measurements[J].Remote Sensing Technology and Application,2015,30(3):413-423.[郑雷,张廷军,车涛,等.利用实测资料评估被动微波遥感雪深算法[J].遥感技术与应用,2015,30(3):413-423.]

[7]Sun S B,Che T,Wang J,et al.Estimation and Analysis of Snow Water Equivalents based on C-band SAR Data and Field Measurements[J].Arctic,Antarctic,and Alpine Research,2015,2(47):313-326.

[8]Wu Lili,Li Xiaofeng,Zhao Kai,et al.The Space-time Analysis and Validation of Snow Depth Inversion Algorithm of Passive Microwave in Northeast China[J].Remote Sensing Technology and Application,2015,30(3):565-572.[武黎黎,李晓峰,赵凯,等.被动微波雪深反演算法在东北地区的时空分析和验证[J].遥感技术与应用,2015,30(3):565-572.]

[9]Dai L Y,Che T,Wang J,Zhang P.Snow Depth and Snow Water Equivalent Estimation from AMSR-E Data based on a Priori Snow Characteristics in Xinjiang,China[J].Remote Sensing of Environment,2012,127:14-29.

[10]Liston G E.Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models[J].Journal of Climate,2004,17:1381-1397.

[11]Su H,Yang Z L,Niu,G Y,et al.Enhancing the Estimation of Continental-scale Snow Water Equivalent by Assimilating MODIS Snow Cover with the Ensemble Kalman Filter[J].Journal of Geophysical Research-Atmospheres,2008,113:D08120,doi:10.1029/2007JD009232.

[12]Bavera D,De Michele C.Snow Water Equivalent Estimation in the Mallero Basin Using Snow Gauge Data and MODIS Images and Fieldwork Validation[J].Hydrological Processes,2009,23:1961-1972.

[13]Grunewald T,Schirmer M,Mott R,et al.Spatial and Temporal Variability of Snow Depth and Ablation Rates in a Small Mountain Catchment[J].Cryosphere,2010,4:215-225.[14]Li Xin,Ma Mingguo,Wang Jian,et al.Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin:Scientific Objectives and Experiment Design[J].Advences in Earth Science,2008,23(9):897-914.[李新,马明国,王建,等.黑河流域遥感——地面观测同步实验:科学目标与实验方案[J].地球科学进展,2008,23(9):897-914.]

[15]Li Hongyi,Wang Jian,Bai Yunjie,et al.The Snow Hydrological Processes during a Representative Snow Cover Period in Binggou Watershed in the Upper Reaches of Heihe River[J].Journal of Glaciology and Geocryology,2009,31(2):293-299.[李弘毅,王建,白云洁,等.黑河上游冰沟流域典型积雪期水文情势[J].冰川冻土,2009,31(2):293-299.]

[16]Sun Shaobo,Che Tao,Wang Shuguo,et al.Snow Cover Area Retrieval Using C-band SAR in Mountain Areas[J].Remote Sensing Technology and Application,2013,28(3):444-452.[孙少波,车涛,王树果,等.C波段SAR山区积雪面积提取研究[J].遥感技术与应用,2013,28(3):444-452.]

[17]Arslan A N,Pulliainen J,Lemmetyinen J,et al.Effects of Snowpack Parameters and Layering Processes at X-and Ku-band Backscatter[C]//Proceedings of the Geoscience and Remote Sensing Symposium(IGARSS),2011 IEEE International,IEEE,2011:3637-3640.DOI:10.1109/IGARSS.2011.6050012.

[18]Shi J,Dozier J.Estimation of Snow Water Equivalence Using SIR-C/X-SAR-Part II:Inferring Snow Depth and Particle Size[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(6):2475-2488.

[19]Martinec J.Runoff Modeling from Snow Covered Area[J].IEEE Transactions on Geoscience and Remote Sensing,1982,20(3):259-262.

[20]Donald J R,Soulis E D.A Land Cover-based Snow Cover Representation for Distributed Hydrologic-models[J].Water Resources Research,1995,31(4):995-1009.

[21]Li H Y,Tang Z G,Wang J,et al.Synthesis Method for Simulating Snow Distribution Utilizing Remotely Sensed Data for the Tibetan Plateau[J].Journal of Applied Remote Sensing,2014,17.DOI:10.1117/1.JRS.8.084696.

[22]Anderton S P,White S M,Alvera B.Evaluation of Spatial Variability in Snow Water Equivalent for a High Mountain Catchment[J].Hydrological Processes,2004,18:435-453.

[23]Luce C H,Tarboton D G,Cooley K R.Sub-grid Parameterization of Snow Distribution for an Energy and Mass Balance Snow Cover Model[J].Hydrological Processes,1999,13(12-13):1921-1933.

[24]Che Tao,Li Xin,Gao Feng.Estimation of Snow Water Equivalent Using Passive Microwave Remote Sensing Data(SSM/I) in Tibetan Plateau[J].Journal of Glaciology and Geocryology 2004,26(3):363-368.[车涛,李新,高峰,青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368.]

[25]Che T,Dai L Y,Wang J,et al.Estimation of Snow Depth and Snow Water Equivalent Distribution Using Airborne Microwave Radiometry in the Binggou Watershed,the Upper Reaches of the Heihe River Basin[J].International Journal of Applied Earth Observation and Geoinformation,2012,17(7):23-32.

[26]Andreadis K M,Lettenmaier D P.Assimilating Remotely Sensed Snow Observations into a Macroscale Hydrology Model[J].Advanced in Water Resources,2006,29(6):872-886.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.