Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (1): 95-101    DOI: 10.11873/j.issn.1004-0323.2016.1.0095
遥感应用     
青藏高原地表温度时空变化分析
杨成松1,车涛2,3,欧阳斌1
(1.中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州730000;
2.中国科学院寒区旱区环境与工程研究所甘肃省遥感重点实验室,甘肃 兰州730000;
3.中国科学院寒区旱区环境与工程研究所黑河遥感试验研究站,甘肃 兰州730000)
Changes in Land Surface Temperature over Qinghai-Tibet Plateau
Yang Chengsong1,Che Tao2,3,Ouyang Bin1
(1.State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and
Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China;
2.Key Laboratory of Remote Sensing of Gansu Province,Cold and Arid Regions Environmental and
Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China;
3.Heihe Remote Sensing Experimental Research Station,Cold and Arid Regions Environmental and
Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China)
 全文: PDF(2666 KB)  
摘要:

使用MODIS地表温度(LST)产品对青藏高原地表温度的空间分布和年际变化进行分析。通过一种融合时空信息的方法对LST缺失像元进行重建恢复,重建后有效像元比例达到97%以上。用正弦和线性分段函数法将4个瞬时时刻的LST观测值拟合为日平均LST,经地面0 cm土壤温度观测数据验证,拟合后的均方根误差(RMSE)在1 K以内。建立以年为周期的余弦函数模型,刻画了LST在一年内的季节波动,并得到LST的年平均值、振幅和峰值日期3个参数。分析了各参数在空间上的分布和多年的变化趋势。结果显示:LST年平均值与海拔高度、纬度和下垫面类型相关性较大;年内振幅从青藏高原东南部到西北部呈升高趋势;水体的峰值日期相比其他地物类型有明显的延迟。多年变化斜率分析显示,整个青藏高原的年平均LST以每年0.015 K的速度升高,振幅以每年0.076 K的速度增长,反映出受气候变化的影响,极端气候出现的概率明显增大,而峰值日期有所提前。

关键词: 青藏高原地表温度(LST)时空变化遥感    
Abstract:

The spatial distribution and multi\|year change in land surface temperature (LST) over the Qinghai\|Tibet Plateau (QTP) was analyzed using MODIS LST products.Firstly,the null pixels were reconstructed by integrating temporal and spatial information.The validity ratio of LST was showed to be over 97% after reconstruction.Secondly,a sine and linear piecewise function was utilized to fit the four instantaneous observations to mean daily LST.Ground observation of 0 cm soil temperature was employed to validate the fitting results,which the accuracy is within 1 K.Lastly,a cosine function model was built to describe the seasonal fluctuation of LST.The mean annual LST,the amplitude and the peak LST date were subsequently extracted by this model.Results showed that the mean annul LST was highly correlated to attitude,latitude and the type of underlying surface.Amplitude of LST was showed to rise from the southeast to northwest.The peak date of water was obviously delayed compared with other land cover types.Slope analysis showed that the mean annual LST over the QTP was increasing with a velocity of 0.015 K per year.Amplitude was elevated by 0.076 K per year,which indicated that the probability of extreme weather was larger than before,due to the greenhouse effect and climate change.The peak date of LST appeared earlier to some extent.

Key words: Qinghai-Tibet Plateau    Land Surface Temperature(LST)    Change    Remote sensing
收稿日期: 2014-12-28 出版日期: 2016-04-05
:  TP 79  
基金资助:

国家自然科学基金项目“基于多源空间数据的青藏高原冻土制图研究”(41271087 )。

通讯作者: 车涛(1976-),男,陕西周至人,研究员,主要从事冰冻圈遥感研究。Email:chetao@lzb.ac.cn。    
作者简介: 杨成松(1977-),女,河北承德人,副研究员,主要从事普通冻土学研究。Email:ychsong@lzb.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨成松
车涛
欧阳斌

引用本文:

杨成松,车涛,欧阳斌. 青藏高原地表温度时空变化分析[J]. 遥感技术与应用, 2016, 31(1): 95-101.

Yang Chengsong,Che Tao,Ouyang Bin. Changes in Land Surface Temperature over Qinghai-Tibet Plateau. Remote Sensing Technology and Application, 2016, 31(1): 95-101.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.1.0095        http://www.rsta.ac.cn/CN/Y2016/V31/I1/95

[1]TangZhiguang,Wang Jian,Liang Ji,et al.Monitoring of Snowline Altitude over the Tibetan Plateau based on MODIS Data[J].Remote Sensing Technology and Application,2015,30(5):767-774.[唐志光,王建,梁继,等.基于MODIS的青藏高原雪线高度遥感监测[J].遥感技术与应用,2015,30(5):767-774.]

[2]Xiao Lin,Che Tao.Preliminary Study on Snow Feedback to the Climate System in the Tibetan Plateau[J].Remote Sensing Technology and Application,2015,30(6):1066-1075.[肖林,车涛.青藏高原积雪对气候反馈的初步研究[J].遥感技术与应用,2015,30(6):1076-1084.]

[3]Li Shuxun,Nan Zhuotong,Zhao Lin.Impact of Freezing and Thawing on Energy Exchange between the System and Environment[J].Journal of Glaciology and Geocrylology,2002,24(2):109-115.[李述训,南卓铜,赵林.冻融作用对系统和环境间能量交换的影响[J].冰川冻土,2002,24(2):109-115.]

[4]Nan Zhuotong,Huang Peipei,Zhao Lin.Permafrost Distribution Modeling and Depth Estimation in the Western Qinghai-Tibet Plateau[J].Journal of Geographical Science,2013,68(3):318-327.[南卓铜,黄培培,赵林.青藏高原西部区域多年冻土分布模拟及其下限估算[J].地理学报,2013,68(3):318-327.]

[5]Huang Peipei,Nan Zhuotong.Estimation of 0 cm Soil Temperature over the Tibetan Plateau based on the Wavelet Analysis and Adaptive Network-fuzzy Inference System[J].Journal of Glaciology and Geocryology,2013,35(1):75-83.[黄培培,南卓铜.基于Wavelet-ANFIT和MODIS地表温度产品的青藏高原0 cm土壤温度估算方法[J].冰川冻土,2013,35(1):75-83.]

[6]Li Dongliang,Wu Qingbai,Tang Maocang.The Time-space Variety Characteristics of the Surface Temperature over the Qinghai-Tibet Plateau[J].Science & Review Technology,2002,(1):18-22.[李栋梁,吴青柏,汤懋苍.青藏高原地表0 cm温度的时空变化特征[J].科技导报,2005,(1):18-22.]

[7]Yu Jinhua,Jian Jun.Analysis of the Correlation between Tibetan Plateau Surface Temperature and Precipitation over North China During Rainy Season[J].Journal of China hydrology,2006,26(1):12-23.[余锦华,建军.华北汛期降水与青藏高原地表温度的相关分析探讨[J].水文,2006,26(1):12-23.]

[8]Ke Linghong,Wang Zhengxing,Song Chunqiao,et al.Reconstruction of MODIS Land Surface Temperature in Northeast Qinghai-Xizang Plateau and Its Comparison with Air Temperature[J].Plateau Meteorology,2011,30(2):277-287.[柯灵红,王正兴,宋春桥,等.青藏高原东北部MODIS地表温度重建及其与气温对比分析[J].高原气象,2011,30(2):277-287.][9]He Dongyan,Tian Hong,Deng Weitao.Applicability Analysis of Three Reanalysis Surface Temperature Data over Tibetan Plateau[J].Transactions of Atmosphere Science,2013,36(4):458-465.[何冬燕,田红,邓伟涛.三种在分析地表温度资料在青藏高原区域的适用性分析[J].大气科学学报,2013,36(4):458-465.]

[10]Crosson W L,Al-Hamdan M Z,Hemmings S N J,et al.A Daily Merged MODIS Aqua-Terra Land Surface Temperature Data Set for the Conterminous United States[J].Remote Sensingof Environment,2012,119:315-324.

[11]Xu Y,Shen Y.Reconstruction of the Land Surface Temperature Time Series Using Harmonic Analysis[J].Computers & Geosciences,2013,61:126-132.

[12]Xu Y,Shen Y,Wu Z.Spatial and Temporal Variations of Land Surface Temperature over the Tibetan Plateau based on Harmonic Analysis[J].Mountain Researchand Development,2013,33(1):85-94.

[13]Zhang G,Yao T,Xie H,et al.Estimating Surface Temperature Changes of Lakes in the Tibetan Plateau Using MODIS LST Data[J].Journal of Geophysical Research-Atmospheres,2014,119(14):8552-8567.

[14]Ouyang Bin,Che Tao,Dai Liyun,et al.Estimating Mean Daily Surface Temperature over the Tibetan Plateau based on MODIS LST Products[J].Journal of Glaciology and Geocryology,2012,34(2):296-303.[欧阳斌,车涛,戴礼云,等.基于MODIS LST产品估算青藏高原地区的日平均地表温度[J].冰川冻土,2012,34(2):296-303.]

[15]Wang Binbin,Ma Yaoming,Ma Weiqiang.Estimation of Land Surface Temperature Retrieved from EOS/MODIS in Naqu Area over Tibetan Plateau[J].Journal of Remote Sensing,2012,(6):1289-1298.[王宾宾,马耀明,马伟强.青藏高原那曲地区MODIS地表温度估算[J].遥感学报,2012,(6):1289-1298.]

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[5] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[6] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[7] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[8] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[9] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[10] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[11] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[12] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[13] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[14] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[15] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.