Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (1): 126-133    DOI: 10.11873/j.issn.1004-0323.2016.1.0126
模型与反演     
长江口及邻近海域悬浮颗粒物对叶绿素a遥感反演算法的影响分析
陈瑜丽,沈芳
(华东师范大学河口海岸学国家重点实验室,上海200062)
Influence of Suspended Particulate Matter on Chlorophyll\|a Retrieval Algorithms in Yangtze River Estuary and Adjacent Turbid Waters
Chen Yuli,Shen Fang
(State Key Laboratory of Estuarine and Coastal Research,
East China Normal University,Shanghai 200062,China)
 全文: PDF(3379 KB)  
摘要:

利用水介质光辐射传输数值模型Hydrolight,结合前人对长江口及邻近海域水体的生物—光学模型研究,模拟不同光学水体的遥感反射率,并分析遥感反射率对悬浮颗粒物(SPM)的敏感性以及SPM对4种叶绿素a(Chla)反演算法(二波段、三波段、荧光基线高度(FLH)和综合叶绿素指数(SCI)算法)的影响。结果表明:由Hydrolight模拟得到的遥感反射率与现场同步实测的遥感反射率的均方根误差小于0.01 sr-1,其中可实现遥感反射率在550~725 nm波段较精确的模拟。遥感反射率对SPM的敏感性随着Chla浓度的升高而降低。二波段、三波段算法适合低SPM浓度水体的Chla浓度反演,FLH算法反演Chla浓度时易受SPM的影响,而SCI算法在中、高SPM浓度水体中消除SPM的影响进而反演Chla的潜力较好。

关键词: 叶绿素a悬浮颗粒物遥感反射率遥感反演长江口    
Abstract:

Combined with bio\|optical model of the Yangtze River Estuary and adjacent water,this study utilized underwater light filed simulation model Hydrolight to obtain remote sensing reflectance spectra of various water types.The sensitivity of remote sensing reflectance to suspended particulate matter(SPM)and the influence on four kinds of chlorophyll\|a(Chla)retrieval algorithms(two\|band algorithms,three\|band algorithm,fluorescent light height(FLH)algorithm,synthetic chlorophyll index(SCI)algorithm)by SPM were analyzed.Results showed that the RSME between the Hydrolight simulated remote sensing reflectance and that of in situ measurements were smaller than 0.01 sr-1,with higher simulation accuracy of remote sensing reflectance from 550 nm to 725 nm.The impact of SPM on remote sensing reflectance decreased with an increase of Chla concentration,which means a decrease of sensitivity.The two\|band and three\|band algorithms were suitable for chlorophyll\|a retrieval with low SPM concentration.FLH was highly influenced by SPM when retrieving Chla,while SCI exhibited better potential of dismissing the influence of SPM when retrieving Chla in highly turbid waters.

Key words: Chlorophyll-a    Suspended particulate matter    Remote sensing reflectance    Retrieval algorithms    Yangtze river estuary
收稿日期: 2014-12-16 出版日期: 2016-04-05
:  X 87  
基金资助:

国家自然科学基金项目(41271375),教育部博士学科点专项科研基金(20120076110009)。

通讯作者: 沈芳(1964-),女,教授,主要从事河口海岸/近海水色遥感研究。Email:fshen@sklec.ecnu.edu.cn。    
作者简介: 陈瑜丽(1990-),女,浙江玉环人,硕士研究生,主要从事河口海岸水色遥感研究。Email:yayachen1990@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈瑜丽
沈芳

引用本文:

陈瑜丽,沈芳. 长江口及邻近海域悬浮颗粒物对叶绿素a遥感反演算法的影响分析[J]. 遥感技术与应用, 2016, 31(1): 126-133.

Chen Yuli,Shen Fang. Influence of Suspended Particulate Matter on Chlorophyll\|a Retrieval Algorithms in Yangtze River Estuary and Adjacent Turbid Waters. Remote Sensing Technology and Application, 2016, 31(1): 126-133.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.1.0126        http://www.rsta.ac.cn/CN/Y2016/V31/I1/126

[1]Huang Changchun,Li Yunmei,Xu Liangjiang,et al.Study on Influencing Factors and Universality of Chlorophyll-a Retrieval Model in Inland Water Body[J].Journal of Environmental Sciences,2013,(2):525-531.[黄昌春,李云梅,徐良将,等.内陆水体叶绿素反演模型普适性及其影响因素研究[J].环境科学,2013,(2):525-531.]

[2]Morel A,Belanger S.Improved Detection of Turbid Waters from Ocean Color Sensors Information[J].Remote Sensing of Environment,2006,(102):237-249.

[3]Shen F,Zhou Y X,Li D J,et al.Medium Resolution Imaging Spectrometer(MERIS)Estimation of Chlorophyll-a Concentration in the Turbid Sediment-Laden Waters of the Changjiang(Yangtze) Estuary[J].International Journal of Remote Sensing,2010,31(17-18):4635-4650.

[4]Yu Xiaolong.Measurements of Pigment Absorption Coefficients and Retrieval Models of Pigment Concentration in Turbid Coastal Waters[D].Shanghai:East China Normal University,2013[余小龙.浑浊海岸水体色素成分的吸收特性测量及其浓度的遥感反演[D].上海:华东师范大学,2013.]

[5]Leonid G S,Shen F.Optical Closure for the Remote-Sensing Reflectance based on Accurate Radiative Transfer Approximations:The Case of Changjiang(Yangtze)River Estuary and Its Adjacent Coastal Area,China[J].International Journal of Remote Sensing,2014,35(11-12):4193-4224.

[6]Lubac B,Loisel H.Variability and Classification of Remote Sensing Reflectance Spectra in the Eastern English Channel and Southern North Sea[J].Remote Sensing of Environment,2007,110(1):45-58.

[7]Hong Guanlin,Shen Fang,Shen Hong.Modeling of Seawater Reflectance in the Yangtze Estuary and the Adjacent Sea[J].Journal of East China Normal University(Natural Science),2012,52(1):37-46.[洪官林,沈芳,沈宏.长江口及邻近海域水体遥感反射率的模拟[J].华东师范大学学报(自然科学版),2012,52(1):37-46.]

[8]Mobley C D.Light and Water[M].San Diego:Academic Press,1994.

[9]Pope R M,Fry E S.Absorption Spectrum(380~700 Nm)of Pure Water.II.Integrating Cavity Measurements[J].Applied Optics,1997,36(33):8710-8723.

[10]Lee Z,Carder K L,Mobley C D,et al.Hyperspectral Remote Sensing for Shallow Waters.I.A Semianalytical Model[J].Applied Optics,1998,37(27):6329-6338.

[11]Zhang Jinfang.Parameterization and Variability of Phytoplankton Abosorption Properties in South Adjacent Coastal Ocean of the Yangtze Estuary[D].Shanghai:East China Normal University,2013.[张晋芳.长江口南部邻近海域浮游植物吸收特性及其参数化研究[D].上海:华东师范大学,2013.]

[12]Bricaud A,Morel A,Prieur L.Absorption by Dissolved Organic Matter of the Sea Yellow Substance in the UV and Visible Domains[J].Limnology and Oceanography,1981(26):43-53.

[13]Shen F,Zhou Y,Hong G.Absorption Property of Non-Algal Particles and Contribution to Total Light Absorption in Optically Complex Waters,A Case Study in Yangtze Estuary and Adjacent Coast[M].Advances in Computational Environment Science.Berlin:Springer Berlin Heidelberg,2012:61-66.

[14]Morel A.Optical Properties of Pure Water and Pure Sea Water[J].Optical Aspects of Oceanography,1974:1-24.

[15]Gould R W,Arnone R A,Martinolich P M.Spectral Dependence of the Scattering Coefficient in Case 1 and Case 2 Waters[J].Applied Optics,1999,38(12):2377-2397.

[16]Liu Meng.Scattering Properties of Suspended Particles in High Turbid Waters and Remote Sensing Application[D].Shanghai:East China Normal University,2013.[刘猛.浑浊水体颗粒物散射特性及遥感初步应用研究[D].上海:华东师范大学,2013.]

[17]Song Qingjun,Tang Junwu.The Study on the Scattering Properties in the Huanghai Sea and East China Sea[J].Acta Oceanologica Sinica,2006,(4):56-63[宋庆君,唐军武.黄海、东海海区水体散射特性研究[J].海洋学报(中文版),2006,(4):56-63]

[18]Kuang Runyuan.Remote Sensing Model of Ocean Color Parameters in Yangtze Estuary[D].Shanghai:East China Normal University,2013.[况润元.长江口水色遥感参数模拟研究[D].上海:华东师范大学,2013.]

[19]Mobley C D,Sundman L K,Boss E.Phase Function Effects on Oceanic Light Fields[J].Applied Optics,2002,(41):1035-1050.

[20]DallOlmo G,Gitelson A A.Effect of Bio-optical Parameter Variability on the Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters:Experimental Results[J].Applied Optics,2005,44(3):412-422.

[21]Zhou L,Roberts D A,Ma W C,et al.,Estimation of Higher Chlorophylla Concentrations Using Field Spectral Measurement and HJ-1A Hyperspectral Satellite Data in Dianshan Lake,China[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,88:41-47.Doi:10.1016/j.isprsjprs.2013.11.016.

[22]Gilerson A,Zhou J,Hlaing S,et al.Fluorescence Component in the Reflectance Spectra from Coastal Waters.Dependence on Water Composition[J].Optics Express,2007,15(24):15702-15721.

[23]Xu Liangjiang,Wang Hong,Huang Changchun,et al.Fluorescence Inversion of Chlorophyll-a in Taihu Lake an Autumn[J].Remote Sensing Technology and Application,2014,29(3):433-441.[徐良将,王红,黄昌春,等.秋季太湖叶绿素a浓度荧光反演研究[J].遥感技术与应用,2014,29(3):433-441.]

[24]Cheng F L,Chuanm H,Jennifer C,et al.Evaluation of Chlorophyll-a Remote Sensing Algorithms for an Optically Complex Estuary[J].Remote Sensing of Environment,2013,(129):75-89.

[1] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[2] 汤玉明,邓孺孺,刘永明,熊龙海. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018, 33(1): 25-34.
[3] 王佳鹏,施润和,张超,刘浦东,曾毓燕. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6): 1056-1063.
[4] 吴仪,邓孺孺,秦雁,梁业恒,熊龙海. 新丰江水库叶绿素浓度时空分布特征的遥感反演研究[J]. 遥感技术与应用, 2017, 32(5): 825-834.
[5] 朱庆,李俊生,张方方,申茜,林卉,王李娟,朱琳. 基于海岸带高光谱成像仪影像的太湖蓝藻水华和水草识别[J]. 遥感技术与应用, 2016, 31(5): 879-885.
[6] 李文娟,赵传燕,别强,高婵婵,高云飞. 基于机载激光雷达数据的森林结构参数反演[J]. 遥感技术与应用, 2015, 30(5): 917-924.
[7] 郑高强,陈芸芝,汪小钦,陈曦. 基于HJ-1卫星CCD数据的厦门海域叶绿素a浓度反演[J]. 遥感技术与应用, 2015, 30(2): 235-241.
[8] 刘朝相,宫兆宁,赵文吉. 基于SVM模型的妫水河叶绿素a浓度的遥感反演[J]. 遥感技术与应用, 2014, 29(3): 419-427.
[9] 刘婧怡,汤旭光,常守志,贾明明,董张玉,邵田田,丁智. 森林叶面积指数遥感反演模型构建及区域估算[J]. 遥感技术与应用, 2014, 29(1): 18-25.
[10] 程春梅,韦玉春,王国祥,张静,夏晓瑞. 使用光谱平滑提高浑浊水体叶绿素a浓度估算模型的应用精度[J]. 遥感技术与应用, 2013, 28(6): 941-948.
[11] 赖格英,曾祥贵,刘影,张玲玲,易发钊,潘瑞鑫,盛盈盈. 基于ETM和图像融合的优势植被冠层叶面积指数和消光系数的遥感反演[J]. 遥感技术与应用, 2013, 28(4): 697-706.
[12] 唐爽,陈蜀江. 基于CBERS-2卫星数据的艾比湖浮游植物生物量的反演研究[J]. 遥感技术与应用, 2013, 28(3): 543-548.
[13] 陈瀚阅,牛铮,毕海波. MODIS数据地表温度反演劈窗算法比较[J]. 遥感技术与应用, 2013, 28(2): 174-181.
[14] 李丽丽,张艳红,邢立新,翟羽娟,董连英. 扎龙湿地龙泡子水深的高光谱建模研究[J]. 遥感技术与应用, 2013, 28(2): 212-216.
[15] 陈军, 温珍河, 孙记红, 付军. 基于四波段半分析算法和Hyperion遥感影像反演太湖叶绿素a浓度[J]. 遥感技术与应用, 2010, 25(6): 867-872.