Please wait a minute...


遥感技术与应用  2016, Vol. 31 Issue (1): 134-142    DOI: 10.11873/j.issn.1004-0323.2016.1.0134
Study on Soil Moisture Inversion of Plateau Pasture Using Radarsat-2 Imagery
Xie Kaixin1,2,Zhang Tingting1,Shao Yun1,Chai Xun1,2
(1.Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100101,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(3418 KB)  

大面积土壤水分反演对于青海湖流域草场的管理和保护具有重要的意义。利用C波段全极化的Radarsat-2 合成孔径雷达(SAR)影像数据,开展了青海湖流域刚察县附近草场的土壤水分反演研究,在“水—云”模型和Chen模型的基础上,发展了一种新的土壤水分反演算法。该算法消除了植被覆盖以及地表粗糙度对雷达后向散射系数的影响。实验结果表明:预测结果能够与实测数据很好地吻合,R2、RMSE和RPD分别达到0.71\,3.77%和1.64,反演精度较高,能够满足研究区土壤水分的反演精度要求。如果能够更细致地刻画植被层以及地表粗糙度对雷达后向散射系数的影响,土壤水分反演精度有望得到进一步提高。

关键词: 土壤水分SAR“水—云”模型Chen模型NDWI高原牧草    

Accurate soil moisture retrieval of large area is of great significance to the management and protection of the plateau pasture.Using fully polarimetric Radarsat\|2 Synthetic Aperture Radar(SAR) images at C\|band,this paper carried out the study of soil moisture inversion in the country of Gangcha,Qinghai province,which is a part of Qinghai Lake watershed.Based on water\|cloud model and Chen model,an algorithm was developed for soil moisture inversion.Elimination of vegetation cover and soil surface roughness effect for backscattering was achieved by the algorithm.Through field measurement validation,the developed algorithm gained reliable results.The results of R2,RMSE and RPD value(0.71,3.77%,1.64) show that the developed algorithm can meet the requirement of soil moisture inversion in study region.In the future,if the vegetation cover and soil surface roughness effect for backscattering could be described in more detail,the accuracy of soil moisture inversion is expected to be further improved.

Key words: Soil moisture    SAR    Water-cloud model    Chen model    NDWI    Plateau pasture
收稿日期: 2014-12-16 出版日期: 2016-04-05
:  X 833  


通讯作者: 张婷婷(1982-),女,辽宁沈阳人,助理研究员,主要从事土壤遥感与制图研究。。    
作者简介: 谢凯鑫(1988-),男,河南林州人,硕士研究生,主要从事微波遥感模型研究。E\|。
E-mail Alert


谢凯鑫,张婷婷,邵芸,柴勋. 基于Radarsat-2全极化数据的高原牧草覆盖地表土壤水分反演[J]. 遥感技术与应用, 2016, 31(1): 134-142.

Xie Kaixin,Zhang Tingting,Shao Yun,Chai Xun. Study on Soil Moisture Inversion of Plateau Pasture Using Radarsat-2 Imagery. Remote Sensing Technology and Application, 2016, 31(1): 134-142.


[1]Hou Yule.The Soil Moisture Content Research in the South of Gangcha County of Qinghai Province[D].Xian:Shaanxi Normal University,2010.[候雨乐.青海省刚察县南部土壤含水量研究[D].西安:陕西师范大学,2010.]

[2]Dong Wen.The Soil Moisture Content Research of the Artificial Forest and Farmland in Xi’an Area[D].Xi’an:Shaanxi Normal University,2007.[董雯.西安地区人工林地与农田土壤含水量变化研究[D].西安:陕西师范大学,2007.]

[3]Liu Zengcan.Microwave Scattering Measurements and Soil Moisture Inversion Study[D].Chengdu:University of Electronic Science and Technology of China,2009.[刘增灿.微波散射测量及土壤水分反演研究[D].成都:电子科技大学,2009.]

[4]Bao Yansong,Liu Liangyun,Wang Jihua,et al.Estimation of Soil Water Content and Wheat Coverage with ASAR Image[J].Journal of Remote Sensing,2006,10(2):263-271.[鲍艳松,刘良云,王纪华,等.利用 ASAR图像监测土壤含水量和小麦覆盖度[J].遥感学报,2006,10(2):263-271.]

[5]Yang Hu.On the Modeling of Canopy Covered Surface Soil Moisture Change Detection Using Multi-temporal Radar Images[D].Beijing:Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,2003.[杨虎.植被覆盖下土壤含水量分变化雷达探测模型和应用研究[D].北京:中国科学院遥感应用研究所,2003.]

[6]Ulaby F T.Microwave Remote Sensing:(Volume 3)[M].Norwood,MA:Artech House,1986.

[7]Fung A K,Li Z,Chen K S.Backscattering from a Randomly Rough Dielectric Surface[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):356-369.

[8]Oh Y,Sarabandi K,Ulaby F T.An Empirical Model and An Inversion Technique for Radar Scattering from Bare Soil Surfaces[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):370-381.〖HJ2mm〗

[9]Dubois P C,VanZyl J,Engman E T.Measuring Soil Moisture with Imaging Radars[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(4):915-926.

[10]Chen K S,Yen S K,Huang W P.A Simple Model for Retrieving Bare Soil Moisture from Radar Scattering Coefficients[J].Remote Sensing of Environment,1995,54(2):121-126.[11]Zribi M,Dechambre M.A New Empirical Model to Retrieve Soil Moisture and Roughness from C-band Radar Data[J].Remote Sensing of Environment,2003,84(1):42-52.

[12]Li Sen.Soil Moisture Inversion Model Research of Multi-band and Multi-polarization SAR based on IEM[D].Beijing:Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,2007.[李森.基于IEM的多波段、多极化SAR土壤水分反演算法研究[D].北京:中国农业科学院农业资源与农业区划研究所,2007.]

[13]Jackson T J,Schmugge T J.Vegetation Effects on the Microwave Emission of Soils[J].Remote Sensing of Environment,1991,36:203-212.

[14]Attema E P W,Ulaby F T.Vegetation Modeled as a Water Cloud[J].Radio Science,1978,13(2):357-364.

[15]Ulaby F T,Elachi C.Radar Polarimetry for Geoscience Applications[M].Boston:Artech House,1990.

[16]Gherboudj I,Magagi R,Berg A A,et al.Soil Moisture Retrieval over Agricultural Fields from Multi-polarized and Multi-angular Radarsat-2 SAR Data[J].Remote Sensing of Environment,2011,115(1):33-43.

[17]Zhang Youjing,Wang Junzhan,Bao Yansong.Soil Moisture Retrieval from Multi-resource Remotely Sensed Images over a Wheat Area[J].Advances in Water Science,2010,21(2):222-228.[张友静,王军战,鲍艳松.多源遥感数据反演土壤水分方法[J].水科学进展,2010,21(2):222-228.]

[18]Yu Fan,Zhao Yingshi.A New Method to Retrieve Soil Moisture under Vegetation Using ASAR and TM Images[J].Science China:Earth Sciences,2011,41(4):532-540.[余凡,赵英时.ASAR 和 TM 数据协同反演植被覆盖地表土壤含水量分的新方法[J].中国科学:地球科学,2011,41(4):532-540.]

[19]Li Qin.Combined Application of Active and Passive Microwave Remote Sensing in the Retrieval of Soil Moisture on the Tibetan Plateau[D].Beijing:Capital Normal University,2011.[李芹.青藏高原地区主被动微波遥感联合反演土壤水分的研究[D].北京:首都师范大学,2011.]

[20]Liu Qiang,Du Jinyang,Shi Jiancheng,et al.Analysis of Spatial Distribution and Multi-year Trend of the Remotely Sensed Soil Moisture on the Tibetan Plateau[J].Science China:Earth Sciences,2013,43(10):1677-1690.[刘强,杜今阳,施建成,等.青藏高原表层土壤湿度遥感反演及其空间分布和多年变化趋势分析[J].中国科学:地球科学,2013,43(10):1677-1690.]

[21]Pasolli L,Notarnicola C,Bruzzone L,et al.Polarimetric Radarsat-2 Imagery for Soil Moisture Retrieval in Alpine Areas〖HJ2.1mm〗[J].Canadian Journal of Remote Sensing,2011,37(5):535-547.

[22]Zhou Peng,Ding Jianli,Wang Fei,et al.Retrieval Methods of Soil Water Content in Vegetation Covering Areas based on Multi-source Remote Sensing Data[J].Journal of Remote Sensing,2010,14(5):966-973.[周 鹏,丁建丽,王 飞,等.植被覆盖地表土壤含水量分遥感反演[J].遥感学报,2010,14(5):966-973.]

[23]Magagi R D,Kerr Y H.Retrieval of Soil Moisture and Vegetation Characteristics by Use of ERS-1 Wind Scatterometer over Arid and Semi-arid Area[J].Journal of Hydrology,1997,188:361-384.

[24]Ge Jianjun,Wang Chao,Zhang Weiguo.Research on Vegetation Scattering Model in the Microwave Remote Sensing of Soil Moisture[J].Remote Sensing Technology and Application,2002,17(4):209-214.[戈建军,王 超,张卫国.土壤湿度微波遥感中的植被散射模型进展[J].遥感技术与应用,2002,17(4):209-214.]

[25]Jackson T J,Schmugge T J.Vegetation Effects on the Microwave Emission of SoilsJ].Remote Sensing of Environment,1991,36:203-212.

[26]Jackson T J,Chen D Y,Cosh M,et al.Vegetation Water Content Mapping Using Landsat Data Derived Normalized Difference Water Index for Corn and Soybeans[J].Remote Sensing of Environment,2004,92(4):475-482.

[27]Gamon J A,Field C B,Goulden M L,et al.Relationships between NDVI,Canopy Structure,and Photosynthesis in Three Californian Vegetation Types[J].Ecological Applications,1995,5(1):28-41.

[28]Gao BC.NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space[J].Remote Sensing of Environment,1996,58(3):257-266.[29]Chen D Y,Huang J F,Jackson T J.Vegetation Water Content Estimation for Corn and Soybeans Using Spectral Indices Derived from MODIS Near- and Short-wave Infrared Bands[J].Remote Sensing of Environment,2005,98(2-3):225-236.

[30]Xu Huanying,Jia Jianhua,Liu Liangyun,et al.Drought Monitoring in Huang-Huai-Hai Plain Using the Multi-drought Indices[J].Remote Sensing Technology and Application,2015,30(1):25-32.[徐焕颖,贾建华,刘良云,等.基于多源干旱指数的黄淮海平原干旱监测[J].遥感技术与应用,2015,30(1):25-32.]

[31]Dunn B W,Batten G D,Beecher H G,et al.The Potential of Near-infrared Reflectance Spectroscopy for Soil Analysis-A Case Study from the Riverine Plain of South-eastern Australia[J].Animal Production Science,2002,42(5):607-614.

[32]Chang C W,Laird D A,Maurice M J,et al.Near-Infrared Reflectance Spectroscopy Principal Components Regression Analyses of Soil Properties[J].Soil Science Society of America Journal,2001,65(2):480-490.

[1] 李姣姣,刘玉,陈锟山. 基于香农熵的极化SAR相干矩阵信息量评价#br#[J]. 遥感技术与应用, 2018, 33(5): 842-849.
[2] 王常颖,田德政,韩园峰,隋毅,初佳兰. 基于属性差决策树的全极化SAR影像海冰分类[J]. 遥感技术与应用, 2018, 33(5): 975-982.
[3] 郭欣,赵银娣. 基于Sentinel-1A SAR的湖南省宁乡市洪水监测[J]. 遥感技术与应用, 2018, 33(4): 646-656.
[4] 张程,张红,王超. 基于PCDM香农熵的全极化SAR图像船舶目标检测方法[J]. 遥感技术与应用, 2018, 33(3): 499-507.
[5] 刘建歌,慕德俊. 基于SAR影像海冰动态特征的提取方法[J]. 遥感技术与应用, 2018, 33(1): 55-60.
[6] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[7] 赵航,陈方, 张美美. 基于改进C-V模型的冰湖轮廓提取方法研究[J]. 遥感技术与应用, 2018, 33(1): 177-184.
[8] 张王菲,陈尔学,李增元,赵磊,姬永杰. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6): 983-997.
[9] 周晓宇,陈富龙. 四川大熊猫栖息地PALSAR时序数据森林覆盖动态监测研究[J]. 遥感技术与应用, 2017, 32(6): 1100-1106.
[10] 扎西央宗,李林,卓玛,冯岩,李学东,白玛央宗. 西藏年楚河流域冰川变化监测方法研究[J]. 遥感技术与应用, 2017, 32(6): 1126-1131.
[11] 姜爱辉,刘国林,陈富龙. 基于PALSAR-1影像的汉函谷关遗迹变化检测研究[J]. 遥感技术与应用, 2017, 32(5): 787-793.
[12] 尤江彬,陈富龙. 西域都护府/且末古城数字地望考与长波段雷达次地表考古初探[J]. 遥感技术与应用, 2017, 32(5): 794-800.
[13] 向怡衡,张明敏,张兰慧,贺缠生,王一博,白晓. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用, 2017, 32(5): 835-843.
[14] 曹永攀,黄春林,陈玮婧,张莹. 联合同化MODIS地表温度与机载L波段微波亮度温度估计土壤水分[J]. 遥感技术与应用, 2017, 32(4): 606-614.
[15] 张宝华,周文涛,吕晓琪. 基于稀疏分解和改进MRF模型的SAR海冰图像分割方法[J]. 遥感技术与应用, 2017, 32(4): 709-713.