Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (1): 165-169    DOI: 10.11873/j.issn.1004-0323.2016.1.0165
数据与图像处理     
LiDAR点云支持下地物精细分类的实现方法
董保根1,马洪超2,车森3,解龙根1,何乔1
(1.93920部队,陕西 汉中723213;2.武汉大学遥感信息工程学院,湖北 武汉430079;
3.信息工程大学地理空间信息学院,河南 郑州450052)
Method of Land Cover Refined Classification  Supported by LiDAR Point Clouds
Dong Baogen1,Ma Hongchao2,Che Sen3,Xie Longgen1,He Qiao1
(1.93920 Troops,Hanzhong 723213,China; 
2.Institute of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China;
3.Institute of Geographic Spatial Information,Information Engineering University,Zhengzhou 450052,China)
 全文: PDF(3343 KB)  
摘要:

在遥感数据分类中,获取精细的地物类别无疑能够传递更加丰富的信息量,进一步加深对遥感数据的理解和解译。在机载LiDAR点云高程数据的支持下,提出并实现了遥感影像上地物精细分类的方法。为保证高精度地同种地物再划分,综合考虑配准、辅助数据源、首次回波、点云密度及影像空间分辨率4种因素,并重点解决了点云密度与影像空间分辨率不匹配的问题,利用决策树显著地提高了影像上建筑物、植被的分类数量,使点云与影像联合分类的优势得到体现,达到了分类精度与地物类别数量相统一的目的。
 

关键词: 机载LiDAR精细分类归一化高度首次回波决策树    
Abstract:

In the process of classification in remote sensing data,acquiring greater refinement of the land cover type can deliver undoubtedly more information and further deepen the comprehension and interpretation for remote sensing data.With the support of point clouds elevation data,the method of refined classification in remote sensing image is proposed and achieved out.In order to gain high accuracy of subdividing the same kind of land cover type,four factors are taken into consideration,which includes registration,supplementary data source,first echo and point clouds density and image spatial resolution,and the focus is placed on dealing with the problems of mismatch between point clouds density and image spatial resolution.Decision tree is developed to improve remarkably the classification quantity of buildings and vegetation in this study,which represents superiority of classification of fusing point clouds and imagery and achieves the desired goal of the unity of classification accuracy and quantity.

Key words: Airborne LiDAR    Refined classification    Normalized Height(NH)    First echo    Decision tree
收稿日期: 2014-09-15 出版日期: 2016-04-05
:  TP 751  
基金资助:

国家自然科学基金项目“属性匹配在多源空间数据融合中的研究”(41201391)资助。

作者简介: 董保根(1977-),男,河南鹤壁人,博士,工程师,主要从事遥感图像处理与机载LiDAR数据处理方面的研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董保根
马洪超
车森
解龙根
何乔

引用本文:

董保根,马洪超,车森,解龙根,何乔. LiDAR点云支持下地物精细分类的实现方法[J]. 遥感技术与应用, 2016, 31(1): 165-169.

Dong Baogen,Ma Hongchao,Che Sen,Xie Longgen,He Qiao. Method of Land Cover Refined Classification  Supported by LiDAR Point Clouds. Remote Sensing Technology and Application, 2016, 31(1): 165-169.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.1.0165        http://www.rsta.ac.cn/CN/Y2016/V31/I1/165

[1]Lodha S K,Kreps E J,Helmbold D P,et al.Aerial LiDAR Data Classification Using Support Vector Machines(SVM)[C]//IEEE Proceedings of the Third International Conference on 3D Data Processing Visualization and Transmission,2006:567-574.

[2]Anton arakis A S,Richards K S,Brasington J.Object-based Land Cover Classification Using Airborne LiDAR[J].Remote Sensing of Environment,2008,112(6):2988-2998.[3]Yu Bailang,Liu Hongxing,Wu Jianping.A Method for Urban Vegetation Classification Using Airborne LiDAR Data and High Resolution Remote Sensing Images[J].Journal of Image and Graphics,2010,15(5):782-789.[余柏蒗,刘红星,吴健平.一种应用机载LiDAR数据和高分辨率遥感影像提取城市绿地信息的方法[J].中国图象图形学报,2010,15(5):782-789.][4]Sasaki T,Imanishi J,Ioki K,et al.Object-based Classification of Land Cover and Tree Species by Intergrating Airborne LiDAR and High Spatial Resolution Imagery Data[J].International Consoritium of Landscape and Ecological Engineering and Springer,2011,8(2):157-171.

[5]Zhong Liang.Researches on Classification Techniques of Airborne LiDAR Data with Auxiliary Aerial Imagery[D].Wuhan:Wuhan University,2011.[钟良.LiDAR同机影像辅助点云分类相关技术研究[D].武汉:武汉大学,2011.]

[6]Cao Lin,Xu Ziqian,Dai Jinson,et al.Method Optimization and Accuracy Evaluation of Terrain and Buildings Extraction based on LiDAR and CCD Data[J].Remote Sensing Technology and Application,2014,29(1):130-137.[曹林,许子乾,代劲松,等.基于LiDAR和CCD数据的地形与建筑提取方法优化及精度评价[J].遥感技术与应用,2014,29(1):130-137.]

[7]Yang Na,Qin Zhiyuan,Zhu Yan,et al.Object-oriented Filtering Method for Airborne LiDAR Point Clouds[J].Journal of Geomatics Science and Technology,2014,31(2):157-161.[杨娜,秦志远,朱艳,等.面向对象的机载LiDAR点云滤波方法[J].测绘科学技术学报,2014,31(2):157-161.]

[8]García M,Riao D,Chuvieco E,et al.Muti-spectral and LiDAR Data Fusion for Fuel Type Mapping Using Support Vector Machine and Decision Rules[J].Remote Sensing of Enviroment,2011,115(6):1369-1379.

[9]Brennan R,Webster T L.Object-oriented Land Cover Classification of LiDAR-derived Surfaces[J].Canadian Journal of Remote Sensing,2006,32(6):162-172.


 

[1] 王常颖,田德政,韩园峰,隋毅,初佳兰. 基于属性差决策树的全极化SAR影像海冰分类[J]. 遥感技术与应用, 2018, 33(5): 975-982.
[2] 王凯,赵军,朱国锋. 基于GF-1遥感数据决策树与混合像元分解模型的冬小麦种植面积早期估算[J]. 遥感技术与应用, 2018, 33(1): 158-167.
[3] 周晓宇,陈富龙. 四川大熊猫栖息地PALSAR时序数据森林覆盖动态监测研究[J]. 遥感技术与应用, 2017, 32(6): 1100-1106.
[4] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[5] 吕利利,颉耀文,黄晓君,张秀霞,李汝嫣. 基于CART决策树分类的沙漠化信息提取方法研究[J]. 遥感技术与应用, 2017, 32(3): 499-506.
[6] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[7] 雷光斌,李爱农,谭剑波,张正健,边金虎,靳华安,赵伟,曹小敏. 基于多源多时相遥感影像的山地森林分类决策树模型研究[J]. 遥感技术与应用, 2016, 31(1): 31-41.
[8] 林志垒,晏路明. 高光谱影像的BDT-SVM地物分类算法与应用[J]. 遥感技术与应用, 2016, 31(1): 177-185.
[9] 韩忻忆,颉耀文. 基于决策树的干旱区湿地信息自动提取—以疏勒河流域为例[J]. 遥感技术与应用, 2015, 30(6): 1146-1152.
[10] 王颖洁,刘良云,王志慧. 基于时序Landsat数据的三江平原植被地表类型变化遥感探测研究[J]. 遥感技术与应用, 2015, 30(5): 959-968.
[11] 刘吉凯,钟仕全,梁文海. 基于多时相Landsat8 OLI影像的作物种植结构提取[J]. 遥感技术与应用, 2015, 30(4): 775-783.
[12] 韩婷婷,习晓环,王成,包玉海,骆社周. 基于决策树方法的云南省森林分类研究[J]. 遥感技术与应用, 2014, 29(5): 744-751.
[13] 白秀莲,巴雅尔,哈斯其其格. 基于C5.0的遥感影像决策树分类实验研究[J]. 遥感技术与应用, 2014, 29(2): 338-343.
[14] 王少伟,张晓祥,杨晓英. 太湖湖滨敏感区的土地利用遥感分类研究[J]. 遥感技术与应用, 2014, 29(1): 114-121.
[15] 丁 一,张 杰,马 毅,江 涛,王 强,单春之. 一种考虑与主要水体距离关系的海岸带湿地遥感分类方法[J]. 遥感技术与应用, 2013, 28(5): 785-790.