Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (3): 417-429    DOI: 10.11873/j.issn.1004-0323.2016.3.0417
山地遥感专栏     
基于无人机的山地遥感观测平台及可靠性分析—以若尔盖试验为例
张正健1,2,李爱农,边金虎1,2,赵伟,南希,雷光斌1,2,谭剑波1,2,夏浩铭1,2,汪阳春,杜小林,林家元1#br#
(1.中国科学院水利部成都山地灾害与环境研究所,四川成都 610041;
2.中国科学院大学,北京 100049)
The Reliability Analysis of Remote Sensing Observation Platform based on Unmanned Aerial Vehicle (UAV) in Mountain Areas—An Experiment Case Study in Zoige Plateau
Zhang Zhengjian1,2,Li Ainong1,Bian Jinhu1,2,Zhao Wei1,Nan Xi1,Lei Guangbin1,2,Tan Jianbo1,2,Xia Haoming1,2,#br# Wang Yangchun1,Du Xiaolin1,Lin Jiayuan1#br#
(1.Institute of Mountain Hazards and Environment,ChineseAcademy of Sciences,Chengdu 610041,China;2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(11496 KB)  
摘要:

在山地复杂条件下开展无人机遥感观测面临众多挑战,分析无人机遥感观测平台的可靠性是影像拼接、成果应用、平台和飞行方案改进的重要基础.介绍了一种基于低空无人机的山地多源数据遥感观测平台,重点阐述了无人机系统的组成、性能参数和传感器参数.以«低空数字航空摄影规范»为参照,总结低空无人机遥感观测平台的可靠性分析方法.以2014年7月25日若尔盖高原无人机遥感观测试验获取的数据为例,定量分析该低空无人机遥感观测平台的可靠性.结果表明:该平台在山地复杂条件下具有较高的可靠性,航向平均重叠度为73.58%,旁向平均重叠度为55.07%,平均倾角为2.23°,航线内平均旋角为1.36°,航线间平均旋角为10.41°,平均航线偏移为5.42m,最大航线弯曲度为0.19%,最大航高差为5m,各项指标评价结果远优于«低空数字航空摄影规范»要求.相机成像面与平台飞行方向的夹角可能引起旁向旋角的增大;在逆风条件下,该小型无人机遥感观测平台的姿态更为稳定.

关键词: 无人机遥感观测平台可靠性分析飞行质量重叠度若尔盖    
Abstract:

Unmanned Aerial Vehicle (UAV) remote sensing observation faces many challenges under the complex condition in mountain areas,and the reliability analysis of remote sensing observation platform based on UAV is necessary for image mosaic,data application and improvement for UAV platform and flight plan.In this paper,we present an observation platform for multi\|source remote sensing data acquisition in mountain areas based on low\|altitude UAV system,which is detailed on components,performance and sensor parameters.The reliability analysis method for UAV remote sensing observation platform was developed on the basis of “Specifications for low\|altitude digital aerial photography”.The remote sensing data acquired from July 25,2014 in Zoige plateau were used to quantitatively evaluate the reliability of the low\|altitude UAV platform.The results indicate an excellent performance under the complex condition in mountain areas.The mean course overlap,mean lateral overlap,mean obliquity angle of the UAV image,and the mean swing angle of inner\|route and inter\|route are estimated to be 73.58%,55.07%,2.23°,1.36° and 10.41° respectively.Based on the GPS records,we determine the mean deviation from the route,the maximum bending degree of the route and the maximum variance of flight height are 5.42m,0.19% and 5m respectively,all the indicators is far better than the reference titled “specifications for low\|altitude digital aerial photography”.According to study,the irregularity between imaging plane of camera and flight direction of UAV may lead to the increase of the inter\|route swing angle,and it is more stable when the UAV flies against the wind.

Key words: UAV    Remote sensing observation platform    Reliability analysis    Flight quality    Overlap    Zoige
出版日期: 2016-07-19
:  TP79  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张正健
李爱农
边金虎
赵伟
南希
雷光斌
谭剑波
夏浩铭
汪阳春
杜小林
林家元

引用本文:

张正健,李爱农,边金虎,赵伟,南希,雷光斌,谭剑波,夏浩铭,汪阳春,杜小林,林家元. 基于无人机的山地遥感观测平台及可靠性分析—以若尔盖试验为例[J]. 遥感技术与应用, 2016, 31(3): 417-429.

Zhang Zhengjian,Li Ainong,Bian Jinhu,Zhao Wei,Nan Xi,Lei Guangbin,Tan Jianbo,Xia Haoming,Wang Yangchun,Du Xiaolin,Lin Jiayuan. The Reliability Analysis of Remote Sensing Observation Platform based on Unmanned Aerial Vehicle (UAV) in Mountain Areas—An Experiment Case Study in Zoige Plateau. Remote Sensing Technology and Application, 2016, 31(3): 417-429.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.3.0417        http://www.rsta.ac.cn/CN/Y2016/V31/I3/417

[1]Jin Wei,Ge Hongli,Du Huaqiang,et al.A Review on Unmanned Aerial Vehicle Remote Sensing and Its Application[J].Remote Sensing Information,2009,24(1):88-92.[金伟,葛宏立,杜华强,等.无人机遥感发展与应用概况[J].遥感信息,2009,24(1):88-92.]

[2]Li Deren,Li Ming.Research Advanced and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System[J].Geomatics and Information Sciences of Wuhan University,2014,39(5):505-514.[李德仁,李明.无人机遥感系统的研究进展与应用前景[J].武汉大学学报(信息科学版),2014,39(5):505-514.]

[3]Fan Chengxiao,Han Jun,Xiong Zhijun,et al.Application and Status of Unmanned Aerial Vehicle Remote Sensing Technology[J].Science of Survey and Mapping,2009,34(5):214-215.[范承啸,韩俊,熊志军,等.无人机遥感技术现状与应用[J].测绘科学,2009,34(5):214-215.]

[4]Peter K D,d'Oleire-Oltmanns S,Ries J,et al.Soil Erosion in Gully Catchments Affected by Land-levelling Measures in the Souss Basin,Morocco,Analysed by Rainfall Simulation and UAV Remote Sensing Data[J].Catena,2014,113:24-40.

[5]Zarco-Tejada P J,Diaz-Varela R,Angileri V,et al.Tree Height Quantication Using Very High Resolution Imagery Acquired from an Unmanned Aerial Vehicle (UAV) and Automatic 3D Photo-Reconstruction Methods[J].European Journal of Agronomy,2014,55:89-99.

[6]Stagakis S,González-Dugo V,Cid P,et al.Monitoring Water Stress and Fruit Quality in an Orange Orchard Under Regulated Deficit Irrigation Using Narrow-band Structural and Physiological Remote Sensing Indices[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,71:47-61.

[7]Li Yizhan,Zhu Xiufang,Zhang Jinshui,et al.A Case Study for Area Estimation of Crop in County Level based on Remote Sensing Data and Sampling Technology[J].Remote Sensing Technology and Application,2015,30(5):891-898.[李宜展,朱秀芳,张锦水,等.与抽样相结合的县级作物遥感面积估算应用实例[J].遥感技术与应用,2015,30(5):891-898.]

[8]Immerzeel W W,Kraaijenbrink P D A,Shea J M,et al.High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles[J].Remote Sensing of Environment,2014,150:93-103.

[9]Lei Tianjie,Li Changchun,He Xiaoying.Application of Aerial Remote Sensing of Pilotless Aircraft to Disaster Emergency Rescue[J].Journal of Natural Disasters,2011,20(1):178-183.[雷添杰,李长春,何孝莹.无人机航空遥感系统在灾害应急救援中的应用[J].自然灾害学报,2011,20(1):178-183.]

[10]Niethammer U,James M R,Rothmund S,et al.UAV-based Remote Sensing of the Super-sauze Landslide:Evaluation and Results[J].Engineering Geology,2012,128:2-11.[11]Li Zhiwei,Wang Zhaoyin,Zhang Chendi,et al.A Study on the Mechanism of Wetland Degradation in Ruoergai Swamp[J].Advances in Water Science,2014,25(2):172-180.[李志威,王兆印,张晨笛,等.若尔盖沼泽湿地的萎缩机制[J].水科学进展,2014,25(2):172-180.]

[12]Duan Xiaonan,Wang Xiaoke,Yin Tao,et al.Advance in the Studies on Carbon Sequestration Potential of Wetland Ecosystem[J].Ecology and Environment,2006,15(5):1091-1095.[段晓男,王效科,尹弢,等.湿地生态系统固碳潜力研究进展[J].生态环境,2006,15(5):1091-1095.]

[13]Li Ainong,Yin Gaofei,Jin Huaan,et al.Principles and Methods for the Retrieval of Biophysical Variables in Mountain Areas[J].Remote Sensing Technology and Application,2016,31(1):1-11.[李爱农,尹高飞,靳华安,等.山地地表生态参量遥感反演的理论、方法与问题[J].遥感技术与应用,2016,31(1):1-11.]

[14]National Administration of Surveying,Mapping and Geoinformation.CH/Z 3005-2010,Specifications for Low-altitude Digital Aerial Photography[S].Beijing,2010.[国家测绘局.CH/Z 3005-2010,低空数字航空摄影规范[S].北京,2010.]

[15]Bai Junhong,Ouyang Hua,Cui Baoshan,et al.Changes in Landscape Pattern of Alpine Wetlands on the Zoige Plateau in the Past Four Decades[J].Acta Ecologica Sinica,2008,28(5):2245-2252.[白军红,欧阳华,崔保山,等.近40年来若尔盖高原高寒湿地景观格局变化[J].生态学报,2008,28(5):2245-2252.]

[16]Jiang Jingang,Li Ainong,Bian Jinhu,et al.Change of Wetlands in Zoige County from 1974 to 2007[J].Wetland Science,2012,10(3):318-326.[蒋锦刚,李爱农,边金虎,等.1974~2007年若尔盖县湿地变化研究[J].湿地科学,2012,10(3):318-326.]

[17]Zhang Zhengjian,Li Ainong,Bian Jinhu,et al.Estimating Aboveground Biomass of Grassland in Zoige by Visible Vegetation Index Derived from Unmanned Aerial Vehicle Image[J].Remote Sensing Technology and Application,2016,31(1):51-62.[张正健,李爱农,边金虎,等.基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J].遥感技术与应用,2016,31(1):51-62.]

[18]Barnhart R K,Hottman S B,Marshall D M,et al.Introduction to Unmanned Aircraft Systems[M].New York,USA:Taylor & Francis Group,2012.

[19]Zhang Jianqing,Pan Li,Wang Shugen.Photogrammetry(The Second Edition)[M].Wuhan:Wuhan Universtion Press,2009.[张剑清,潘励,王树根.摄影测量学(第二版)[M].武汉:武汉大学出版社,2009.]

[20]Lowe D G.Distinctive Image Features from Scale-invarient Keypoint[J].International Journal of Computer Vision,2004,60(2):91-110.

[21]General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People's Republic of China.GB/T 6962-2005,Specification for Serial Photography of 1:500 1:1000 1:2000 Dcale Yopographic Maps[S].Beijing,2005.[中华人民共和国国家质量监督检验检检疫总局,中国国家标准化管理委员会.GB/T 6962-2005,1:500 1:1000 1:2000地形图航空摄影规范[S].北京,2005.]

[22]Yang Ailing,Yu Hongwei,Zheng Canhui.Quality Discussion on the Aerial Images of Light UAV[J].Geomatics & Spatial Informantion Technology,2011,34(2):185-18.[杨爱玲,于洪伟,郑灿辉.关于轻型无人机航摄影像的质量探讨[J].测绘与空间地理信息,2011,34(2):185-18.]

[1] 赵云,谢东海,邓磊,闫亚男,李博旭. 利用多角度影像计算BRDF的方法与系统实现[J]. 遥感技术与应用, 2018, 33(4): 741-749.
[2] 何艺,周小成,黄洪宇,许雪琴. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018, 33(1): 168-176.
[3] 周在明,杨燕明,陈本清. 基于无人机影像的滩涂入侵种互花米草植被信息提取与覆盖度研究[J]. 遥感技术与应用, 2017, 32(4): 714-720.
[4] 褚洪亮,肖青,柏军华,程娟. 基于无人机遥感的叶面积指数反演[J]. 遥感技术与应用, 2017, 32(1): 140-148.
[5] 朱爽,张锦水. 样本特征对参数/非参数分类器分类精度的影响分析[J]. 遥感技术与应用, 2016, 31(4): 748-755.
[6] 李爱农,边金虎,张正健,赵伟,南希,孙志宇,唐明坤,俄尕. 若尔盖高原区域碳收支参量多尺度遥感综合观测试验:科学目标与试验设计[J]. 遥感技术与应用, 2016, 31(3): 405-416.
[7] 张正健,李爱农,边金虎,赵伟,南希,靳华安,谭剑波. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62.
[8] 李宜展,朱秀芳,张锦水,潘耀忠,李慕义. 与抽样相结合的县级作物遥感面积估算应用实例[J]. 遥感技术与应用, 2015, 30(5): 891-898.
[9] 赵峰,汪云甲,闫世勇. 时序InSAR技术地表沉降监测结果可靠性及沉降梯度分析[J]. 遥感技术与应用, 2015, 30(5): 969-979.
[10] 宋耀鑫,张丹丹,唐伶俐,李传荣,马灵玲. 基于ASIFT算法的低重叠度无人机影像拼接方法[J]. 遥感技术与应用, 2015, 30(4): 725-730.
[11] 柴子为,康峻,王力,赵昕,乔海浪. 基于无人机影像的山地人工林景观DEM构建[J]. 遥感技术与应用, 2015, 30(3): 504-509.
[12] 邹利东,郭航,朱秀芳,王艳艳,郑学昌,王建阔. 设施农业空间分布信息自动提取方法研究[J]. 遥感技术与应用, 2014, 29(4): 669-674.
[13] 李政,李永树,唐敏. 一种求解无人机影像外方位角元素的方法[J]. 遥感技术与应用, 2014, 29(3): 506-510.
[14] 姜烨,孙建国,谢家丽,颜长珍. 近20 a若尔盖湿地水土流失变化的遥感评估[J]. 遥感技术与应用, 2013, 28(6): 1088-1093.
[15] 陈本清,杨燕明,郑凌虹,文洪涛. 基于SIFT和TPS算法的四旋翼无人机图像自动配准[J]. 遥感技术与应用, 2013, 28(4): 604-609.