Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (3): 518-529    DOI: 10.11873/j.issn.1004-0323.2016.3.0518
数据与图像处理     
多云雾地区高时空分辨率植被覆盖度构建方法研究
陈阳1,2,范建容,张云1,2,李胜1,2,甘泉1,2,应国伟1,2,曹伟超1,2
(1.四川省地理国情监测工程技术研究中心,四川成都 610500;
2.四川省第三测绘工程院,四川成都 610500;
3.中国科学院水利部成都山地灾害与环境研究所,四川成都 610041)
Research on Constructing Vegetation Fractional Coverage with Higher Spatial and Temporal Resolution in Cloudy and Foggy Region
Chen Yang1,2,Fan Jianrong3,Zhang Yun1,2,Li Sheng1,2,Gan Quan1,2,Ying Guowei1,2,Cao Weichao1,2
(1.Geographic National Condition Monitoring Engineering Research Center of
Sichuan Province,Chengdu 610500, China;
2.The Third Surveying and Mapping Engineering Institute of Sichuan,Chengdu 610500,China;
3.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences &Ministry
of Water Conservancy,Chengdu 610041,China)
 全文: PDF(18580 KB)  
摘要:

针对多云雾地区高时空分辨率数据缺乏现状,提出了一套区域尺度高时空分辨率植被覆盖度数据构建方法.首先,通过时空适应反射率融合模型(STARFM)有效地将TM 的较高空间分辨率与MODIS的高时间分辨率融合在一起,构建了研究区植被生长峰值阶段的NDVI数据;然后,以植被生长峰值阶段的NDVI为输入,基于地表覆被类型,综合应用等密度和非密度亚像元模型对研究区的植被覆盖度进行估算.结果表明:①即使数据源存在大量的云雾,且存在一定的时相差异,研究区植被覆盖度的估算结果过渡自然,不存在明显的不接边效应;②以植被生长峰值阶段的NDVI数据为输入进行植被覆盖度估算,有效拉开了同一地表覆被类型不同覆盖度像元的NDVI梯度,提高了亚像元估算模型对输入数据的抗扰动性;③基于地表覆被类型,应用亚像元混合模型,能够提高植被覆盖度的估算精度.经野外实测数据验证,总体约85%的估算精度表明,针对高时空分辨率遥感数据缺乏的多云雾区域,本研究提出的方法能够实现区域尺度植被覆盖度数据的构建.

关键词: 高时空分辨率区域尺度STARFM亚像元模型植被覆盖度    
Abstract:

Focusing on the cloudy and foggy region lacked of remote sensing data with highspatial and temporal resolution,a method of constructing vegetationfractional coveragewith high spatial and temporal resolution,on region scale has been proposed,in this paper.First,normalized difference vegetation index (NDVI) data with higher spatial andtemporal resolution was constructed by combining advantages both of TM and MODIS usingspatial and temporal adaptive reflectance fusion model (STARFM).Then,based on the land coverage typedata and NDVI data in the peak stage of vegetation growth,the vegetation fractional coverageof study area was estimated by density sub\|pixel model andnon\|density sub\|pixel model.The result shows that:①Even the data sources with a lot of snow and cloud or shoot at different times,in the estimated vegetation fractional coverage image,the color of the area covered by cloud or it’s shade is consistent with the color of area uncontaminated;②The normalizeddifference vegetation index (NDVI) data,in the peak stage of vegetation growth,as input dataimproved the anti\|disturbance to input data of sub\|pixel mixed model estimates of vegetationcoverage by maximum the NDVI difference of same vegetation with differentvegetation fractional coverage;③Based on land coverage using sub\|pixel model can improve the accuracy ofestimating vegetation fractional coverage.Validated by the data measured in the field,the accuracy of estimated vegetation fractional coverage isabout 85%,which suggest that it is viable to estimate vegetation fractional coverage in large regions,especially lacking of remote sensing data with high spatial and temporal resolution.

Key words: High spatial and temporal resolution;Region scale;STARFM;Sub\    pixel model;Vegetation fractional coverage
收稿日期: 2015-04-13 出版日期: 2016-07-19
:  TP79   
基金资助:

四川省测绘地理信息局科技支撑项目“基于解译知识库的面向对象信息提取技术在地里国(省)情地表覆盖解译中的应用研究”(J2013ZC03),四川省测绘地理信息局科技支撑项目“地理国情监测支持下的山区公路沿线生态地质环境承载力研究”(J2014ZC03).

通讯作者: 范建容(1969-),女,四川井研人,研究员,主要从事生态与灾害遥感研究、山地土壤侵蚀研究.Email:fjrong@imde.ac.cn.   
作者简介: 陈阳(1987-),男,四川仪陇人,助理工程师,主要从事GIS与生态遥感应用研究.Email:sunshine198761@163.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈阳
范建容
张云
李胜
甘泉
应国伟
曹伟超

引用本文:

陈阳,范建容,张云,李胜,甘泉,应国伟,曹伟超. 多云雾地区高时空分辨率植被覆盖度构建方法研究[J]. 遥感技术与应用, 2016, 31(3): 518-529.

Chen Yang,Fan Jianrong,Zhang Yun,Li Sheng,Gan Quan,Ying Guowei,Cao Weichao. Research on Constructing Vegetation Fractional Coverage with Higher Spatial and Temporal Resolution in Cloudy and Foggy Region. Remote Sensing Technology and Application, 2016, 31(3): 518-529.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.3.0518        http://www.rsta.ac.cn/CN/Y2016/V31/I3/518

[1]Du Feng,Cheng Jimin.Loss of Water,Erosion of Soil and Vegetation[J].Journal of Sichuan Grassland,1999,2:7-11.[杜峰,程积民.植被与水土流失[J].四川草原,1999,2:7-11.][2]Ma Chaofei,Ma Jianwen,Buhe Aosaier.Quantitative Assessment of Vegetation Coverage Factor in USLE Model Using Remote Sensing Data[J].Bulletin of Soil and Water Conservation,2001,21(4):6-9.[马超飞,马建文,布和敖斯尔.USLE模型中植被覆盖因子的遥感数据定量估算[J].水土保持通报,2001,21(4):6-9.]

[3]Yang Qinke,Luo Wangqin,Ma Hongbin,et al.NDVI Extraction of Regional Soil Erosion based on Remote Sensing,Research of Soil and Water Conservation,2006,13(5):267-271.[杨勤科,罗万勤,马宏斌,等.区域水土流失植被因子的遥感提取[J].水土保持研究,2006,13(5):267-271.]

[4]Sun Hongyu,Wang Changyao,Niu Zheng,et al.Analysis of the Vegetation Cover Change and Relationship between NDVI and Environmental Fractors by Using NOAA Time Series Data[J].Journal of Remote Sensing,1998,2(3):204-210.[孙红雨,王长耀,牛铮,等.中国地表植被覆盖变化及其与气候因子关系—基于NOAA时间序列数据分析[J].遥感学报,1998,2(3):204-210.]

[5]Zhang Yunxia,Li Xiaobing,Chen Yunhao.Overview of Field and Multi-scale Remote Sensing Measurement Approaches to Grassland Vegetation Coverage[J].Advance in Earth Sciences,2003,18(1):85-93.[张云霞,李晓斌,陈云浩.草地植被覆盖度的多尺度遥感与实地测量方法综述[J].地球科学进展,2003,18(1):85-93.]

[6]Huang C Q,Yang L M,Wylie B,et al.A Strategy for Estimating Tree Canopy Density Using Landsat 7 ETM+ and High Resolution Images over Large Areas[C]//Proceedings of the Third International Conference on Geospatial Information in Agriculture and Forestry held in Denver,Colorado,5-7 November,2001.

[7]Qin Wei,Zhu Qingke,Zhang Xuexia,et al.Review of Vegetation Covering and its Measuring and Calculating Method[J].Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition),2006,34(9):163-170.[秦伟,朱清科,张学霞,等.植被覆盖度及其测算方法研究进展[J].西北农林科技大学学报(自然科学版),2006,34(9):163-170.]

[8]Chen Yunhao,Li Xiaobing,Shi Peijun,et al.Estimating Vegetation Coverage Change Using Remote Sensing Data in Haidian District,Beijing[J].Acta Phytoecologica Sinica,2001,25(5):588-593.[陈云浩,李晓兵,史培军,周海丽.北京海淀区植被覆盖度的遥感动态研究[J].植物生态学报,2001,25(5):588-593.]

[9]Song Sha.Retreval of Vegtation Coverage Using Muti-sensor Remote Sensing Data[D].Ya’an:Sichuan Agricultural University,2010.[宋莎.基于多源遥感数据的植被覆盖度研究[D].雅安:四川农业大学,2010.]

[10]Zhou Q,Robson M.Automated Rangeland Vegetation Cover and Density Estimation Use Ground Digital Images and a Spectral-contextual Classifier[J].Remote Sensing,2001,22(17):3457-3470.

[11]Honda T,Purevdorj R,Tateishi T,et al.Relationships between Pereent Vegetation Cover and Vegetation Indices[J].International Journal of Remote Sensing,1998,19(18):3519-3535.

[12]Li Miaomiao.The Method of Vegetation Fraction Estimation by Remote Sensing[D].Beijing:Institute of Remote Sensing Applications Chinese Academy of Sciences,2003.[李苗苗.植被覆盖度的遥感估算方法研究[D].北京:中国科学院遥感应用研究所,2003.]

[13]Wen X P,Yang X F.Haze Removal from the Visible Bands of CBERS Remote Sensing Data[J].International Conference on Industrial and Information Systems,2009:456-462.doi:10.1109/us.2009.58.

[14]Hilker T,Wulder M A,Coops N C,et al.Generation of Dense Time Series Synthetic Landsat Data through Data Blending with MODIS Using a Spatial and Temporal Adaptive Reflectance Fusion Model[J].Remote Sensing of Environment,2009,113(9):1988-1999.

[15]Coops N C,Johnson M,Wulder M A,et al.Assessment of QuickBird High Spatial Resolution Imagery to Detect Red Attack Damage Due to Mountain Pine Beetle Infestation[J].Remote Sensing of Environment,2006,103(1):67-88.

[16]Holben B N.Characteristics of Maximum-value Composite Image from Temporal AVHRR Data[J].International Journal of Remote Sensing,1986,7(11):1417-1434.

[17]Justice C O,Townshend J R G,Holben B N,et al.Analysis of the Phenology of Global Vegetation Using Meteorological Satellite Data[J].International Journal of Remote Sensing,1985,6(8):1271-1318.

[18]Meng Jihua,Wu Bingfang,Du Xin,et al.Method to Construct High Spatial and Temporal Resolution NDVI DataSet-STAVFM[J].Journal of Remote Sensing,2011,15(1):44-59.[蒙继华,吴炳方,杜鑫,等.高时空分辨率NDVI数据集构建方法[J].遥感学报,2011,15(1):44-59.]

[19]Guo Weijing,Li Ainong,Zhao Zhiqiang,et al.Constructiong the Time-series NDVI Dataset with a High Spatial and Temporal Resolution through Fusing AVHRR with TM Data[J].Remote Sensing Technology and Application,2015,30(3):267-276.[郭文静,李爱农,赵志强,等.基于AVHRR和TM数据的时间序列较高分辨率NDVI数据集重构方法[J].遥感技术与应用,2015,30(3):267-276.]

[20]Gao F,Masek J,Schwaller M,et al.On the Blending of the Landsat and MODIS Surface Reflectance:Predicting Daily Landsat Surface Reflectance[J].IEEE Transactions on Geosciences and Remote Sensing,2006,44(88):2207-2218.

[21]Roy P,Ju J C,Lewis P,et al.Multi-temporal MODIS-Landsat Data Fusion for Relative Radiometric Normalization,Gap Filling,and Prediction of Landsat Data[J].Remote Sensing of Environment,2008,112(6):3112-3130.

[22]Hilker T,Wulder M A,Coops N C,et al.A New Data Fusion Model for High Spatial and Temporal Resolution Mapping of Forest based on Landsat and MODIS[J].Remote Sensing of Environment,2009,113:1613-1627.

[23]Zhu X L,Chen J,Gao F,et al.A Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions[J].Remote Sensing of Environment,2010,114:2610-2623.

[24]Zhu Changming,Shen Zhanfeng,Luo Jiancheng,et al.Research on Landsat-7 SLC-off Image Restroration Method Based on MODIS09 Data[J].Acta Geodaetica et Cartographica Sinica,2010,39(3):251-256.[朱长明,沈占锋,骆剑承,等.基于MODIS数据的Landsat-7 SLC-off影像修复方法研究[J].测绘学报,2010,39(3):251-256.]

[25]Cohen W B,Goward S M.Landsat’s Role in Ecological Applications of Remote Sensing[J].Bioscience,2004,54(6):535-545.

[26]Ranson K J,Kovacs K,Sun G,et al.Disturbance Recognition in the Boreal Forest Using Radar and Landsat-7[J].Canadian Journal of Remote Sensing,2003,29(2):271-285.

[27]Pape A D,Franklin S E.MODIS based Change Detection for Grizzly Bear Habitat Mapping in Alberta[J].Photogrammetric Engineering and Remote Sensing,2008,74(8):973-985.

[28]Justice C O,Vermote E,Townshend J R G,et al.The Moderate Resolution Imaging Spectroradiometer (MODIS):Land Remote Sensing for Global Change Research[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(4):1228-1249.

[29]Running S W,Justice C O,Salomonson V,et al.Terrestrial Remote Sensing Science and Algorithms Planned for EOS/MODIS[J].International Journal of Remote Sensing,1994,15(17):3587-3620.

[30]Price J C.Estimating Vegetation Amount from Visible and Near-infrared Reflectance[J].Remote Sensing of Environment,1992,41(1):29-34.

[31]Baret F,Guyot G.Potential and Limits of Vegetation Indices for LAI and APAR Assessment[J].Remote Sensing of Environment,1991,35(2):161-173.

[32]Gutman G,Ignatov A.The Derivation of The Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models[J].International Journal of Remote Sensing,1998,19(8):1533-1543.

[33]Chen Jin,Chen Yunhao,He Chunyang,et al.Sub-pixel Model for Vegetation Fraction Estimation based on Land Cover Classification[J].Journal of Remote Sensing,2001,5(6):416-422.[陈晋,陈云浩,何春阳,等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6):416-422.]〖JP〗

[34]Zhang X,Yan G,Li Q,et al.Evaluating the Fraction of Vegetation based on NDVI Spatial Scale Correction Model[J].International Journal of Remote Sensing,2006,27(24):5359-5372.

[35]Choudhury B J,Ahmed N U,Idso S B,et al.Relations between Evaporation Coefficients and Vegetation Indices Studied by Model Simulations[J].Remote Sensing of Environment,1994,50(1):1-17.

[1] 段金亮,王杰,张婷. 一种基于光谱归一化下的植被覆盖度反演算法[J]. 遥感技术与应用, 2018, 33(2): 252-258.
[2] 方雨晨,王培燕,田庆久. 不同覆盖度下小麦农田土壤对NDVI影响模拟分析[J]. 遥感技术与应用, 2017, 32(4): 660-666.
[3] 周在明,杨燕明,陈本清. 基于无人机影像的滩涂入侵种互花米草植被信息提取与覆盖度研究[J]. 遥感技术与应用, 2017, 32(4): 714-720.
[4] 吴志杰,何国金,王猛猛,傅娇凤,邹丹. 南方丘陵区植被覆盖度遥感估算与时空变化研究—以福建省永定县为例[J]. 遥感技术与应用, 2016, 31(6): 1201-1208.
[5] 李艺梦,祁元,马明国. 基于Landsat8影像的额济纳荒漠绿洲植被覆盖度估算方法对比研究[J]. 遥感技术与应用, 2016, 31(3): 590-598.
[6] 康峻,王力,牛铮,高帅,邬明权 . 基于局部空间自相关分析的时空数据融合[J]. 遥感技术与应用, 2015, 30(6): 1176-1181.
[7] 郭文静,李爱农,赵志强,王继燕. 基于AVHRR和TM数据的时间序列较高分辨率NDVI数据集重构方法[J]. 遥感技术与应用, 2015, 30(2): 267-276.
[8] 陈阳,范建容,文学虎,曹伟超,王蕾. 基于时空数据融合模型的TM影像云去除方法研究[J]. 遥感技术与应用, 2015, 30(2): 312-320.
[9] 王敏,付迎春. 城市异质植被的覆盖度估算模型比较研究[J]. 遥感技术与应用, 2015, 30(2): 364-369.
[10] 张航,仲波,洪友堂,万华伟,柳钦火. 近20多年来赣州地区稀土矿区遥感动态监测[J]. 遥感技术与应用, 2015, 30(2): 376-382.
[11] 黄永喜,李晓松,吴炳方,董泰锋. 基于改进的ESTARFM数据融合方法研究[J]. 遥感技术与应用, 2013, 28(5): 753-760.
[12] 谭清梅,刘红玉,张华兵,王 聪,侯明行. 基于遥感的江苏省滨海湿地景观植被覆盖度分级研究[J]. 遥感技术与应用, 2013, 28(5): 934-940.
[13] 蔡德文,牛铮,王力. 遥感数据时空融合技术在农作物监测中的适应性研究[J]. 遥感技术与应用, 2012, 27(6): 927-932.
[14] 马娜,刘越,胡云锋,张学利,艳燕. 内蒙古浑善达克沙地南部草地盖度探测及其变化分析[J]. 遥感技术与应用, 2012, 27(1): 128-134.
[15] 张添,黄春林,沈焕锋. 地表通量对模型参数的不确定性和敏感性分析[J]. 遥感技术与应用, 2011, 26(5): 569-576.