Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (3): 580-589    DOI: 10.11873/j.issn.1004-0323.2016.3.0580
遥感应用     
干旱区地表L波段微波辐射特性分析穿透深度的影响
王定文1,2,3,黄春林1,2,顾娟
(1.中国科学院寒区旱区环境与工程研究所黑河遥感试验研究站,甘肃兰州 730000;
2.中国科学院寒区旱区环境与工程研究所甘肃省遥感重点实验室,甘肃兰州 730000;
3.中国科学院大学,北京 100049;4.兰州大学资源环境学院,甘肃兰州 730000)
Impact of Penetration Depth on L-band Microwave Brightness Temperature in Arid Region based on L-MEB Model
Wang Dingwen1,2,3,Huang Chunlin1,2,Gu Juan4
(1.Heihe Remote Sensing Experimental Research Station,Cold and Arid Regions Environmental and
Engineering Research Institute,CAS,Lanzhou 730000,China;
2.Key Laboratory of Remote Sensing of Gansu Province,Cold and Arid Regions Environmental and
Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China;
Cold and Arid Regions Environmental and Engineering Research Institute,CAS,Lanzhou 730000,China;
3.University of Chinese Academy of Sciences,Beijing 100049,China;
4.College of Earth Environmental Sciences,LanzhouUniversity,Lanzhou 730000,China)
 全文: PDF(7901 KB)  
摘要:

利用2012年黑河中游HiWATER实验区戈壁和大满超级站的土壤水分和温度廓线数据,基于LGMEB微波辐射传输模型,分析了L波段微波穿透深度随土壤水分的变化.在此基础上,分析了不同深度土壤水分和温度作为LGMEB模型输入,对L波段微波发射率和亮度温度的影响.研究结果表明:L波段微波穿透深度随土壤水分、温度的变化,呈现明显的差异,在本研究区L波段微波穿透深度在4~22cm 之间;在土壤水分较高的超级站,计算的L波段亮度温度与0~4cm土壤层的亮度温度更为接近,而在土壤水分较低的戈壁站,计算的L波段亮度温度与0~40cm土壤层的亮度温度更为接近.因此,在利用L波段微波数据反演土壤水分时,应考虑穿透深度的影响,以提高反演精度.

关键词: 土壤水分LGMEB微波遥感穿透深度干旱区    
Abstract:

Based on L\|MEB(the L\|band Microwave Emission of the Biosphere)model and observations of soil moisture and soil temperature profiles of two stations located at HiWATER experimental area in midstream of the Heihe River Basin in 2012,we analyzed the influence of soil moisture variation on L\|band microwave penetration depth.Also,we analyzed further the influence of soil moisture and temperature with different depths as input of L\|MEB on calculations of surface emissivity and brightness temperature.It is shown that penetration depth ranges from 4 to 30 cm in these two sites and obviously changes with soil moisture profile.The calculated brightness temperatures are closer to results of 0~4 cm in Super Station but are closer to results of 0~40 cm in Gobi Station.Therefore,it should be taken much attention to the impact of penetration depth on retrieving soil moisture based on L\|band microwave brightness temperature.

Key words: Soil moisture;L\    MEB;Microwave remote sensing;Penetration depth;Arid region
收稿日期: 2015-08-20 出版日期: 2016-07-19
:  TP79   
基金资助:

国家自然科学基金项目(91325106)和中国科学院“百人计划”项目(29Y127D01)资助.

通讯作者: 黄春林(1979-),男,宁夏青铜峡人,研究员,主要从事陆面数据同化研究.Email:huangcl@lzb.ac.cn.   
作者简介: 王定文(1989-),女,陕西咸阳人,硕士研究生,主要从事微波反演土壤水分的研究.Email:wen1179680527@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王定文
黄春林
顾娟

引用本文:

王定文,黄春林,顾娟. 干旱区地表L波段微波辐射特性分析穿透深度的影响[J]. 遥感技术与应用, 2016, 31(3): 580-589.

Wang Dingwen,Huang Chunlin,Gu Juan. Impact of Penetration Depth on L-band Microwave Brightness Temperature in Arid Region based on L-MEB Model. Remote Sensing Technology and Application, 2016, 31(3): 580-589.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.3.0580        http://www.rsta.ac.cn/CN/Y2016/V31/I3/580

[1]Song D S,Zhao K,Guan Z.Advances in Research on Soil Moisture by Microwave Remote Sensing in China[J].Chinese Geographical Science,2007,17(2):186-191.

[2]Kornelsen K C,Coulibaly P.Advances in Soil Moisture Retrieval from Synthetic Aperture Radar and Hydrological Applications[J].Journal of Hydrology,2013,476:460-489.

[3]Choudhury B J,Tucker C J,Golus R E,et al.Monitoring Vegetation Using Nimbus-7 Scanning Multichannel Microwave Radiometer's Data[J].International Journal of Remote Sensing,1987,8(3):533-538.

[4]Poe G A,Edgerton A T.Determination of Soil Moisture Content with Airborne Microwave Radiometry[C]//United States Dept.of Commerce,National Oceanic and Atmospheric Administration,National Environmental Satellite Service,Hillcrest Heights,1971.

[5]Schmugge T,Gloersen P,Wilheit T,et al.Remote Sensing of Soil Moisture with Microwave Radiometers[J].Journal of Geophysical Research,1974,79(2):317-323.

[6]Teng W L,Wang J R,Doraiswamy P C.Relationship between Satellite Microwave Radiometric Data,Antecedent Precipitation Index,and Regional Soil-moisture[J].International Journal of Remote Sensing,1993,14(13):2483-2500.

[7]Owe M,A.V D G A.Daily Surface Soil Moisture Model for Large Area Semi-arid Land Application with Limited Climate Data[J].Journal of Hydrology,1990,121:14.

[8]Schmugge T,Oneill P E,Wang J R.Passive Microwave Soil-Moisture Research[J].IEEE Transactions on Geoscience and Remote Sensing,1986,24(1):12-22.

[9]Wang J R,Choudhury B J.Remote-sensing of Soil-moisture Content over Bare Field at 1.4 Ghz Frequency[J].Journal of Geophysical Research-Oceans and Atmospheres,1981,86(Nc6):5277-5282.

[10]Wilheit T T.Radiative-Transfer in a Plane Stratified Dielectric[J].IEEE Transactions on Geoscience and Remote Sensing,1978,16(2):138-143.

[11]Saleh K,Wigneron J P,Waldteufel P,et al.Estimates of Surface Soil Moisture under Grass Covers Using L-band Radiometry[J].Remote Sensing of Environment,2007,109(1):42-53.

[12]Wang Xinyuan,Liu Hao.On Radar Wave's Penetration and Acquiring Subsurface Remained Information[J].Journal of Anhui Normal University(Natural Science),2001,24(1):57-59.[王心源,刘浩.雷达遥感穿透次地表获取残存信息分析[J];安徽师范大学学报(自然科学版),2001,24(1):57-59.].

[13]Wigneron J P,Kerr Y,Waldteufel P,et al.L-band Microwave Emission of the Biosphere (L-MEB) Model:Description and Calibration Against Experimental Data Sets over Crop Fields[J].Remote Sensing of Environment,2007,107(4):639-655.

[14]Choudhury B J,Schmugge T J,Chang A,et al.Effect of Surface-roughness on the Microwave Emission from Soils[J].Journal of Geophysical Research-Oceans and Atmospheres,1979,84(Nc9):5699-5706.

[15]Wang J R,Oneill P E,Jackson T J,et al.Multifrequency Measurements of the Effects of Soil-moisture,Soil Texture,and Surface-roughness[J].IEEE Transactions on Geoscience and Remote Sensing,1983,21(1):44-51.

[16]Guo P,Shi J C,Liu Q,et al.A New Algorithm for Soil Moisture Retrieval With L-Band Radiometer[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2013,6(3):1147-1155.

[17]Mironov V L,Kosolapova L G,Fomin S V.Physically and Mineralogically based Spectroscopic Dielectric Model for Moist Soils[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(7):2059-2070.

[18]Li Dazhi,Jin Rui,Che Tao,et al.Soil Moisture Retrieval from Airborne PLMR and MODIS Products in the Zhangye Oasis of Middle Stream of the Heihe river basin,China[J].Advance in Earth Science,2014,29(2):295-305.[李大治,晋锐,车涛,等.联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究[J].地球科学进展2014,29(2):295-305].

[19]Ulaby F T,Moore R K,Fung A K.Microwave Remote Sensing:Active and Passive.Volume Ⅲ:from Theory to Applications[M].Norwood,MA:Artech House,1986.

[20]Ulaby F T,Elachi C.Radar Polarimetry for Geoscience Applications[M].Norwood,MA:Artech House,1990.

[21]Li Xin,Liu Shaomin,Ma Mingguo,et al.HiWATER:An Integrated Remote Sensing Experiment on Hydrological and Ecological Processes in the Heihe River Basin[J].Advance in Earth Science,2012,27(5):481-498.[李新,刘绍民,马明国,等.黑河流域生态-水文过程综合遥感观测联合试验总体设计[J].地球科学进展,2012,27(5):481-498].

[22]Xu Z W,Liu S M,Li X,et al.Intercomparison of Surface Energy Flux Measurement Systems Used during the HiWATER-MUSOEXE[J].Journal of Geophysical Research,2013,118:13140-13157.

[1] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[2] 苏阳,祁元,王建华,徐菲楠,张金龙. 基于航空高光谱影像的额济纳绿洲土地覆被提取[J]. 遥感技术与应用, 2018, 33(2): 202-211.
[3] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[4] 魏龙,王维真,吴月茹,马春锋. 土壤水盐介电模型对比与分析[J]. 遥感技术与应用, 2017, 32(6): 1022-1030.
[5] 陈栋栋,赵军. 我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1114-1125.
[6] 向怡衡,张明敏,张兰慧,贺缠生,王一博,白晓. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用, 2017, 32(5): 835-843.
[7] 曹永攀,黄春林,陈玮婧,张莹. 联合同化MODIS地表温度与机载L波段微波亮度温度估计土壤水分[J]. 遥感技术与应用, 2017, 32(4): 606-614.
[8] 于惠,吴玉锋,金毅,张峰. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究[J]. 遥感技术与应用, 2017, 32(3): 524-530.
[9] 王增艳,王建,车涛. 机载L波段微波辐射计数据反演表层土壤水分研究[J]. 遥感技术与应用, 2017, 32(2): 185-194.
[10] 赵泽斌,晋 锐,田伟,亢健,苏阳. 基于SiB2模型的土壤水分降尺度指标的适用性研究[J]. 遥感技术与应用, 2017, 32(2): 195-205.
[11] 陆峥,柴琳娜,张涛,崔慧珍,李婉静. AMSR2土壤水分产品在黑河流域中上游的验证[J]. 遥感技术与应用, 2017, 32(2): 324-337.
[12] 张祥,陈报章,赵慧,汪磊. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2): 338-345.
[13] 张焱,李新武,梁雷. 基于微波散射计的格陵兰冰盖冻融探测方法研究[J]. 遥感技术与应用, 2017, 32(1): 113-120.
[14] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[15] 晋锐. 中国长时间序列地表冻融状态数据集[J]. 遥感技术与应用, 2016, 31(4): 820-826.