Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (4): 691-701    DOI: 10.11873/j.issn.1004-0323.2016.4.0691
模型与反演     
最小二乘法联合光学与雷达遥感数据估算玉米叶面积指数
林岳峰1,2,柳钦火1,李静1,赵静1
(1.中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100101;
2.电子科技大学资源与环境学院,四川 成都 611731)
Estimation of Corn LAI by Synergy Multi-spectral and SAR Remote Sensing Data based on Least Squares Method
Lin Yuefeng1,2,Liu Qiuhuo1,Li Jing1,Zhao Jing1
(1.State Key Laboratory of Remote Sensing Science,Institute of Remote Sensing and
Digital Earth,Chinese Academy of Sciences,Beijing 100101,China;
2.School of Resource and Environment,University of Electronic Science and
Technology of China,Chengdu 611731,China)
 全文: PDF(5585 KB)  
摘要:

针对单源数据经验模型估算精度较低等问题,提出采用最小二乘法联合光学和雷达遥感数据构建联合估算模型,以中国科学院河北怀来遥感综合实验站为研究区,以夏季玉米为研究对象,利用Landsat8和Radarsat2影像实现研究区叶面积指数估算:首先分别建立了多光谱数据和雷达数据与实测叶面积指数之间的回归模型,然后利用最小二乘算法联合不同数据间的回归模型构建估算模型,最后利用迭代法估算叶面积指数并通过验证数据对估算结果进行评价分析,同时与单源数据经验模型、多源数据加权平均模型和基于物理模型查找表估算结果进行对比。通过对研究区59个样本点数据分析表明:基于最小二乘算法联合光学与雷达遥感数据能够提高叶面积指数的估算精度(R2=0.5442,RMSE=0.81),优于单源遥感数据拟合经验模型(DVI 经验模型:(R2=0.485,RMSE=1.27))、基于权重的光学微波联合模型(R2=  0.447,RMSE=1.36)和物理模型查找表法(R2=0.333,RMSE=1.36),并当叶面积指数大于3时,对其由于信息饱和或误差引起的低估或高估现象具有一定的抑制作用。

关键词: 叶面积指数最小二乘法Landsat8光学数据Radarsat2雷达数据迭代法    
Abstract:

As a result of different kinds of RS data containing varied information about green plants,to avoid the problem of low precision,the joint inversion model that constructed by the least squares method combined optical and radar remote sensing data such as Landsat8/OLI and Radarsat2 data was put forward to estimate LAI.And this research area was based on Remote Sensing Synthetic Experiment Station of Chinese Academy of Sciences in Huailai,Hebei Province and the research objects were maize.First of all,conventional method was used for remote sensing image preprocessing and then measured LAI was considered to build the empirical expressions between the extracted information from multi\|spectral data and radar data.Secondly,the least squares method that combined with Regression Model from different data was used to build the joint inversion model.At last,the joint inversion model was used to estimate the LAI based on iteration method and assess the result by the verification data.For comparison,the empirical model using vegetation index or backscattering coefficient as predicted variable,the weighted averaging model using multi\|source data and the Look\|up table method from physical model were also considered for LAI estimation.The result shows the better fit result was found between the predicted LAI from Partial Least Squares method and measured LAI (R2=0.5442,RMSE=0.81).Moreover,partial least squares method also couldimprove the overestimated and underestimated phenomenon from empirical method or weight fusion model due to the data quality,system error or saturation of remote sensing data.

Key words: Leaf Area Index(LAI);Least squares algorithm;Landsat8 multi\    spectral data;Radarsat 2 microwave radar data;Iteration method
收稿日期: 2015-08-10 出版日期: 2016-10-14
:  TP 79  
基金资助:

国家自然科学基金项目“非均质混合像元遥感反射波谱模型构建及叶面积指数反演方法研究”(41271366),国家973计划项目“复杂地表遥感辐散射机理及动态建模”(2013CB733401),国家863计划项目“多尺度遥感数据按需快速处理与定量遥感产品生成关键技术”(2012AA12A304)。

通讯作者: 柳钦火(1968-),男,江西九江人,研究员,主要从事遥感辐射传输机理、实验与建模研究。Email:liuqh@radi.ac.cn。    
作者简介: 林岳峰(1989-),男,湖北黄冈人,硕士研究生,主要从事森林生物量方面的研究。Email:linyuefeng1989@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林岳峰
柳钦火
李静
赵静

引用本文:

林岳峰,柳钦火,李静,赵静. 最小二乘法联合光学与雷达遥感数据估算玉米叶面积指数[J]. 遥感技术与应用, 2016, 31(4): 691-701.

Lin Yuefeng,Liu Qiuhuo,Li Jing,Zhao Jing. Estimation of Corn LAI by Synergy Multi-spectral and SAR Remote Sensing Data based on Least Squares Method. Remote Sensing Technology and Application, 2016, 31(4): 691-701.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.4.0691        http://www.rsta.ac.cn/CN/Y2016/V31/I4/691

[1]Chen J M,Black T A.Defining Leaf Area Index for Non-Flat Leaves[J].Plant,Cell and Environment,1992,15(4):421-429.

[2]Arora V.ModelingVegetation as A Dynamic Component in Soil-Vegetation-AtmosphereTansfer Schemes and Hydrological Models[J].Reviews of Geophysics,2002,40(2):1-26.

[3]Sellers P J,Dickinson R E,Randall D A,et al.Modeling the Exchanges of Energy,Water,and Carbon Between Continents and the Atmosphere[J].Science,1997,275(5299):502-509.

[4]Wang Xiqun,Ma Luyi,Jia Zhongkui,et al.Research and Application Advances in Leaf Area Index[J].Chinese Journal of Ecology,2005,24(5):537-541.[王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541.]

[5]Zhang Wenzhi,Xu Wenbo,Fan Xiangjie,et al.Inversion of Leaf Area Index Using the MERSI Data of the Fengyun Satellite[J].Remote Sensing Technology and Application,2015,30(5):925-931.[张文智,许文波,范向杰,等.利用风云卫星 MERSI 数据反演叶面积指数的研究[J].遥感技术与应用,2015,30(5):925-931.]

[6]Schlerf M,Atzberger C,Hill J.Remote Sensing of Forest Biophysical Variables Using HyMap Imaging Spectrometer Data[J].Remote Sensing of Environment,2005,95(2):177-194.

[7]Liu Yang,Liu Ronggao,Chen Jingming,et al.Current Status and Perspectives of Leaf Area Index Retrieval from Optical Remote Sensing Data[J].Journal ofGeo-Information Science,2013,15(5):734-743.[刘洋,刘荣高,陈镜明,等.叶面积指数遥感反演研究进展与展望[J].地球信息科学学报,2013,15(5):734-743.]

[8]Verhoef W.Light Scattering by Laf Layers with Application to Canopy Reflectance Modeling:The SAIL Model[J].Remote Sensing of Environment,1984,16(84):125-141.

[9]Li X,Strahler A H.Geometric-Optical Bidirectional Reflectance Modeling of the Dscrete Crown Vegetation Canopy:Effect of Crown Shape and Mutual Shadowing[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):276-292.

[10]Chen J M,Leblanc S G.A Four-scale Bidirectional Reflectance Model based on Canopy Architecture[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1316-1337.

[11]Woodgate W,Armston J D,Disney M,et al.Quantifying the Impact of Woody Material on Leaf Area Index Estimation from Hemispherical Photography Using 3D Canopy Simulations[J].Agricultural and Forest Meteorology,2016,226:1-12.

[12]Chen Hanyue,Huang Wenjiang,Niu Zheng,et al.Estimation of Forest Leaf Area Index from Remote Sensing Data Using the Algorithm based on Geometric-optical Model[J].Journal of Geo-Information Science,2012,14(3):358-365.[陈瀚阅,黄文江,牛铮,等.基于几何光学模型的人工林叶面积指数遥感反演[J].地球信息科学学报,2012,14(3):358-365.]

[13]Tang S,Chen J M,Zhu Q,et al.LAI Inversion Algorithm based on Directional Reflectance Kernels[J].Journal of Environmental Management,2007,85(3):638-648.

[14]Haboudane D,Miller J R,Pattey E,et al.Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies:Modeling and Validation in the Context of Precision Agriculture[J].Remote Sensing of Environment,2004,90(3):337-352.

[15]Ulaby F T,Allen C T,Iii G E,et al.Relating the Microwave Backscattering Coefficient to Leaf Area Index[J].Remote Sensing of Environment,1984,14(84):113-133.

[16]Prévot L,Champion I,Guyot G.Estimating Surface Soil Moisture and Leaf Area Index of AWheat Canopy Using ADual-Frequency(C and X bands) Scatterometer[J].Remote Sensing of Environment,1993,46(93):331-339.

[17]Wang Jing,Li Xin.Progresses on Data Fusion Technology of Crop Growth Multi-source Observation Information[J].Remote Sensing Technology and Application,2015,30(2):209-219.[王静,李新.基于作物生长模型和多源数据的融合技术研究进展[J].遥感技术与应用,2015,30(2):209-219]

[18]Yang Guijun,Huang Wenjiang,Wang Jihua,et al .Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote SensingData[J].Chinese Bulletin of Botany,2010,45(5):556-578.[杨贵军,黄文江,王纪华,等.多源多角度遥感数据反演森林叶面积指数方法[J].植物学报,2010,45(5):566-578.]

[19]Manninen T,Smolander H,Voipio P,et al.Boreal Forest LAI Retrieval Using Both Optical and Microwave Data of ENVISAT[C]//Geoscience and Remote Sensing Symposium.Seoul:IGARSS '05.Proceedings.IEEE International,2005.

[20]Monnet J M,Chanussot J,Berger F.Support Vector Regression for the Estimation of Forest Stand Parameters Using Airborne Laser Scanning.[J].IEEE Geoscience and Remote Sensing Letters,2011,8(3):580-584.

[21]Yu Fan,Zhao Yingshi.A New Semi-empirical Model for Soil Moisture Content Retrieval by ASAR and TM Data in Vegetation-Covered Aeas[J].Science China Earth Science,2011,41(4):532-540.[余凡,赵英时.ASAR和TM数据协同反演植被覆盖地表土壤水分的新方法[J].中国科学:地球科学,2011,41(4):532-540.]

[22]Zhang G,Ganguly S,Nemani R R,et al.Estimation of Forest Aboveground Biomass in California Using Canopy Height and Leaf Area Index Estimated from Satellite Data[J].Remote Sensing of Environment,2014,151(8):44-56.

[23]Wang C,Qi J.Biophysical Estimation in Tropical Forests Using JERS-1 SAR and VNIR Imagery.II.Aboveground Woody Biomass[J].International Journal of Remote Sensing,2008,29(23):6827-6849.

[24]Liu Qian,Yang Le,Liu Qinhuo,et al.Estimation of Aboveground Woody Biomass Using HJ-1 and Radarsat-2 Data for Deciduous Forests in Daxinganling,China[C]// International Society for Optics and Photonics.Beijing:SPIE Asia Pacific Remote Sensing,2014.

[25]Ni W,Sun G,Guo Z,et al.Retrieval of Forest Biomass from ALOS PALSAR Data Using a Lookup Table Method[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2013,6(2):875-886.

[26]Gao S,Niu Z,Huang N,et al.Estimating the Leaf Area Index,Height and Biomass of Maize Using HJ-1 and RADARSAT-2[J].International Journal of Applied Earth Observation & Geoinformation,2013,24(4):1-8.

[27]Du Hejuan,Liu Qinhuo,Li Jing,et al.Retrieving Crop Leaf Area Index by Combining Optical and Microwave Vegetation Indices:A Feasibility Analysis[J].Journal of Remote Sensing,2013,17(6):1599-1611.[杜鹤娟,柳钦火,李静,等.光学与微波植被指数协同反演农作物叶面积指数的可行性分析[J].遥感学报,2013,17(6):1587-1611.]

[28]Jin Huaan,Li Ainong,Bian Jinhu,et al.Leaf Area Index(LAI) Estimationfrom Remotely Sensed Observations in Different Topographic Gradients over Southwestern China[J].Remote Sensing Technology and Application,2016,31(1):42-50.[靳华安,李爱农,边金虎,等.西南地区不同山地环境梯度叶面积指数遥感反演[J].遥感技术与应用,2016,31(1):42-50.]

[29]Moghaddam M,Dungan J L,Acker S.Forest Variable Estimation from Fusion of SAR and Multispectral Optical Data[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40:2176-2187.

[30]Zhu Gaolong,Ju Weiming,Chen Jingming,et al.Forest Canopy Leaf Area Index in Maoershan Mountain:Ground Measurement and Remote Sensing Retrieval[J].Chinese Journal of Applied Ecology,2010,21(8):2117-2124.[朱高龙,居为民,范文义,等.帽儿山地区森林冠层叶面积指数的地面观测与遥感反演[J].应用生态学报,2010,21(8):2117-2124.]

[31]Fang Xiuqin,Zhang Wangchang,Liu Sanchao,et al.The Estimationof LAI in Heihe River Basin Using Remotely Sensed Data[J].Remote Sensing for Land and Resources,2004,16(1):27-31.[方秀琴,张万昌,刘三超,等.黑河流域叶面积指数的遥感估算[J].国土资源遥感,2004,16(1):27-31.]

[32]Haboudane D,Miller J R,Pattey E,et al.Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies:Modeling and Validation in the Context of Precision Agriculture[J].Remote Sensing of Environment,2004,90(3):337-352.

[33]Graham A J,Harris R.Extracting Biophysical Parameters from Remotely Sensed Radar Data:AReview of the Water Cloud Model[J].Progress in Physical Geography,2003,27(2):217-229.

[34]Inoue Y,Kurosu T,Maeno H,et al.Season-Long Daily Measurements of Multifrequency (Ka,Ku,X,C,and L) and Full-Polarization Backscatter Signatures Over Paddy Rice Field and Their Relationship with Biological Variables[J].Remote Sensing of Environment,2002,81(2):194-204.

[35]Zhang Xiaoqian,Guo Lin,Ma Shangjie,et al.Monitoring Rice Leaf Area Index Using Time-Series SAR Data[J].Transactions of the Chinese Society of Agricultural Engineering.2014,30(13):185-193.[张晓倩,郭琳,马尚杰,等.利用时序合成孔径雷达数据监测水稻叶面积指数[J].农业工程学报,2014,30(13):185-193.]

[36]Du Hejuan.A Study of Synergy of Optical and Microwave Radiative Transfer Models and Joint Retrieval of Leaf Area Index of Vegetation[D].Beijing:University of Chinese Academy of Sciences,2013.[杜鹤娟.植被光学与微波辐射传输模型协同及叶面积指数联合反演研究[D].北京:中国科学院大学,2013.]

[37]Ulaby F T,Sarabandi K,Mcdonald K,et al.Michigan Microwave Canopy Scattering Model[J].International Journal of Remote Sensing,1990,11(7):1223-1253.


 

[1] 刘振波,邹娴,葛云健,陈健,曹雨濛. 基于高分一号WFV影像的随机森林算法反演水稻LAI[J]. 遥感技术与应用, 2018, 33(3): 458-464.
[2] 谢京凯,王福民,王飞龙,张东尼. 面向水稻LAI监测的植被指数土壤调节参数修正[J]. 遥感技术与应用, 2018, 33(2): 342-350.
[3] 肖昊,王杰. 基于IDL和MATLAB混合编程的两种光谱混合分析方法比较[J]. 遥感技术与应用, 2017, 32(5): 858-865.
[4] 褚洪亮,肖青,柏军华,程娟. 基于无人机遥感的叶面积指数反演[J]. 遥感技术与应用, 2017, 32(1): 140-148.
[5] 李焱,王让会,管延龙,蒋烨林,吴晓全,彭擎. 基于高光谱反射特性的土壤全氮含量预测分析[J]. 遥感技术与应用, 2017, 32(1): 173-179.
[6] 杨勇帅,李爱农,靳华安,尹高飞,赵伟,雷光斌,边金虎. 中国西南山区GEOV1、GLASS和MODISLAI产品的对比分析[J]. 遥感技术与应用, 2016, 31(3): 438-450.
[7] 靳华安,李爱农,边金虎,赵伟,张正健,南希. 西南地区不同山地环境梯度叶面积指数遥感反演[J]. 遥感技术与应用, 2016, 31(1): 42-50.
[8] 李铮,柏延臣,何亚倩. 遥感叶面积指数产品提取自然植被物候期对比[J]. 遥感技术与应用, 2015, 30(6): 1103-1112.
[9] 刘婧怡,汤旭光,常守志,贾明明,董张玉,邵田田,丁智. 森林叶面积指数遥感反演模型构建及区域估算[J]. 遥感技术与应用, 2014, 29(1): 18-25.
[10] 孙晨曦,刘良云,关琳琳. 内蒙古锡林浩特草原GLASS LAI产品的真实性检验[J]. 遥感技术与应用, 2013, 28(6): 949-954.
[11] 赖格英,曾祥贵,刘影,张玲玲,易发钊,潘瑞鑫,盛盈盈. 基于ETM和图像融合的优势植被冠层叶面积指数和消光系数的遥感反演[J]. 遥感技术与应用, 2013, 28(4): 697-706.
[12] 任浩然,苗洪利,周晓光,王桂忠,王云海,张杰. 逆大气压校正结果对海况偏差的影响[J]. 遥感技术与应用, 2013, 28(2): 200-204.
[13] 高帅,牛铮,邬明权. 基于ENVISAT/ASAR的神经网络反演人工林叶面积指数研究[J]. 遥感技术与应用, 2013, 28(2): 205-211.
[14] 李 新,刘 强,柳钦火,王 建,马明国,肖 青,车 涛,晋 锐,冉有华. 黑河综合遥感联合试验研究进展:水文与生态参量遥感反演与估算[J]. 遥感技术与应用, 2012, 27(5): 650-662.
[15] 刘佳音,韩 冰,洪 文. 一种新的SAR图像斜距多普勒定位模型的直接解法[J]. 遥感技术与应用, 2012, 27(5): 716-721.