Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (4): 764-772    DOI: 10.11873/j.issn.1004-0323.2016.4.0764
数据与图像处理     
基于被动微波与时空联合算法的云下像元LST重建
臧琳1,2,宋冬梅1,单新建3,崔建勇1,邵红梅4,沈晨4,时洪涛1,2,宋先月5
(1.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580;
2.中国石油大学(华东)研究生院,山东 青岛 266580;3.中国地震局地质研究所,北京 100029;
4.中国石油大学(华东)理学院,山东 青岛 266580;5.上海市地震局,上海 200062)
Reconstruction of LST under the Cloud based on Passive Microwave Remote Sensing and Spatio-temporal Domain Algorithm
Zang Lin1,2,Song Dongmei1,Shan Xinjian3,Cui Jianyong1,Shao Hongmei4,Shen Chen4,Shi Hongtao1,2,Song Xianyue5
(1.School of Geosciences,China University of Petroleum,Qingdao 266580,China;
2.Graduate School,China University of Petroleum,Qingdao 266580,China;
3.Institute of Geology,China Earthquake Administration,Beijing 100029,China;
4.College of Science,China University of Petroleum,Qingdao 266580,China;
5.Shanghai Earthquake Administration,Shanghai 200062,China)
 全文: PDF(9278 KB)  
摘要:

地表温度作为衡量地球表面水热平衡的关键参数,具有两大时空分布特征:第一,空间分布一致性,即属性相近的像元地表温度与其地表亮温间的相关关系相对稳定;第二,时间序列周期性,且同一地区时间越接近地表温度值越相似。基于这两大特征将空间统计模型与时间序列滤波相结合,提出了用于云下像元地表温度重建的时空联合算法。以2008年MODIS地表温度产品为研究对象,采用Landsat TM数据和AMSR_E地表亮温数据重建中国9个省份的地表温度值,并与基于MODIS地表分类产品的多通道统计模型重建结果进行对比。实验结果表明,所提算法实用性强,能有效实现大面积复杂下垫面区域的地表温度重建;平均重建误差约为1.2 K,相较于基于下垫面分类的多通道统计模型下降了76%,算法精度明显提高。

关键词: 地表温度MODIS被动微波AMSR_E时空联合    
Abstract:

As a key parameter to measure the water\|heat balance of earth surface,land surface temperature has two spatio\|temporal distribution characteristics:One is spatial distribution stability,that is,the correlation between the land surface temperature and the land surface bright temperature among those pixels whose properties are similar and relatively stable;the other is time series periodicity,and for one pixel,the time is closer,the temperatures are more similar.based on these characteristics,combined space statistical model with time series filtering,a spatio\|temporal domain algorithm was used for the reconstruction of land surface temperature,which was proposed.In the paper,the temperatures were reconstructed in 9 provinces (Xinjiang,Qinghai,Sichuan,Yunnan,Henan,Anhui,Hubei,Hunan,Jiangxi) of China with MODIS temperature products (MOD11A2),Landsat TM data and AMSR_E brightness temperature data (AMSR_EL2A) in 2008.Then,the inversion precisions in 9 provinces of the proposed algorithm were calculated based on arithmetic average method,and compared with the reconstruction results of multi\|channel statistical model based on the surface classification products from MODIS (MOD12).The results show that the proposed algorithm is practical,and that can be applied in any kind of LST images even there are lots of null values;and the average inversion error of this method for China with MOD11A2 products is about 1.2 K,decreased by 76% compared with multi\|channel statistical model,therefore the reconstruction accuracy is significantly improved.

Key words: Land surface temperature;MODIS;Passive microwave;AMSR_E;Spatio\    temporal domain
收稿日期: 2016-01-05 出版日期: 2016-10-14
:  TP 75  
基金资助:

地震动力学国家重点实验室开放基金“卫星热红外地震异常信号提取算法研究”(LED2012B02),上海市科学技术委员会项目“上海地区地壳活动图像天地联合监测分析”(14231202600)。

通讯作者: 宋冬梅(1973-),女,吉林长春人,副教授,博士,主要从事景观生态、海洋遥感与热红外遥感等方面的研究。Email:songdongmei1973@126.com。   
作者简介: 臧琳(1991-),女,山东济宁人,硕士研究生,主要从事热红外遥感研究。Email:18765920116@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
臧琳
宋冬梅
单新建
崔建勇
邵红梅
沈晨
时洪涛
宋先月

引用本文:

臧琳,宋冬梅,单新建,崔建勇,邵红梅,沈晨,时洪涛,宋先月. 基于被动微波与时空联合算法的云下像元LST重建[J]. 遥感技术与应用, 2016, 31(4): 764-772.

Zang Lin,Song Dongmei,Shan Xinjian,Cui Jianyong,Shao Hongmei,Shen Chen,Shi Hongtao,Song Xianyue. Reconstruction of LST under the Cloud based on Passive Microwave Remote Sensing and Spatio-temporal Domain Algorithm. Remote Sensing Technology and Application, 2016, 31(4): 764-772.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.4.0764        http://www.rsta.ac.cn/CN/Y2016/V31/I4/764

[1]Jia Yuanyuan,Li Zhaoliang.Progress in Land Surface Temperature Retrieval from Passive Microwave Remotely Sensed Data[J].Progress in Geography,2006,25(3):96-105.[贾媛媛,李召良.被动微波遥感数据反演地表温度研究进展[J].地理科学进展,2006,25(3):96-105.]

[2]Chen Xiuzhi,Chen Shuisen,Li Dan,et al.Progress in Land Surface Temperature Retrieval from Passive Microwave Remote Sensing Data[J].Advances in Earth Science,2010,25(8):827-835.[陈修治,陈水森,李丹,等.被动微波遥感反演地表温度研究进展[J].地球科学进展,2010,25(8):827-835.]

[3]Liu Jing,Ma Hongzhang,Yang Le,et al.A Survey of Surface Temperature Retrieval by Passive Microwave Remote Sensing[J].Remote Sensing Technology and Application,2012,27(6):812-821.[刘晶,马红章,杨乐,等.基于被动微波的地表温度反演研究综述[J].遥感技术与应用,2012,27(6):812-821.]

[4]Zhou Fangcheng,Song Xiaoning,Li Zhaoliang.Progress of Land Surface Temperature Retrieval based on Passive Microwave Remote Sensing[J].Remote Sensing for Land & Resources,2014,26(1):1-7.[周芳成,宋小宁,李召良.地表温度的被动微波遥感反演研究进展[J].国土资源遥感,2014,26(1):1-7.]

[5]Holmes T R H,Jeu D R A M,Owe M,et al.Land Surface Temperature from Ka Band (37 GHz) Passive Microwave Observations[J].Journal of Geophysical Research,2009,114(D4):83-84.

[6]André C,Ottlé C,Royer A,et al.Land Surface Temperature Retrieval over Circumpolar Arctic Using SSM/I-SSMIS and MODIS Data[J].Remote Sensing of Environment,2015,162(1):1-10.

[7]Mcfarland M J,Miller R L,Neale C M U.Land Surface Temperature Derived from the SSM/I Passive Microwave Brightness Temperatures[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(5):839-845.

[8]Xiao Lijiao,Zhang Lixin,Jiang Lingmei,et al.Validation of Surface Temperature Inversion Algorithm Using Passive Microwave over Qinghai-Tibet Plateau[J].Remote Sensing Information,2012,27(5):37-43.[肖丽娇,张立新,蒋玲梅,等.青藏高原地区被动微波遥感反演地表温度算法验证[J].遥感信息,2012,27(5):37-43.]

[9]Mao Kebiao,Shi Jiancheng,Li Zhaoliang,et al.The Land Surface Temperature and Emissivity Retrieved from the AMSR Passive Microwave Data[J].Remote Sensing for Land & Resources,2005,65(3):14-17.[毛克彪,施建成,李召良,等.用被动微波AMSR数据反演地表温度及发射率的方法研究[J].国土资源遥感,2005,65(3):14-17.]

[10]Mao Kebiao,Shi Jiancheng,Li Zhaoliang,et al.A Physical Statistical Algorithms for the Land Surface Temperature Using the AMSR Passive Microwave Data[J].Science China D:Earth Sciences,2006,36(12):1170-1176.[毛克彪,施建成,李召良,等.一个针对被动微波AMSR-E数据反演地表温度的物理统计算法[J].中国科学.D辑:地球科学,2006,36(12):1170-1176.]

[11]Wu Shengli,Yang Hu.Global Land Surface Temperature Retrieval with AMSR-E Brightness Temperature and MODIS Land Cover Type Products[J].Remote Sensing Technology and Application,2007,22(2):234-237.[武胜利,杨虎.AMSR-E亮温数据与MODIS陆表分类产品结合反演全球陆表温度[J].遥感技术与应用,2007,22(2):234-237.]

[12]孟霖达.利用AMSR-E数据反演地表温度[D].吉林:吉林大学,2007.[Meng Linda.Land Surface Temperature Retrieval from AMSR-E Data[D].Jilin:Jilin University,2007.]

[13]Liu Zenglin,Tang Bohui,Li Zhaoliang.Calculation of Land Surface Temperature based on AMSR-E Data[J].Science & Technology Review,2009,27(4):24-27.[刘曾林,唐伯惠,李召良.AMSR-E微波数据反演裸地地表温度算法研究[J].科技导报,2009,27(4):24-27.]

[14]Chen S,Chen X,Chen W,et al.A Simple Retrieval Method of Land Surface Temperature from AMSR-E Passive Microwave Data—A Case Study over Southern China during the Strong Snow Disaster of 2008[J].International Journal of Applied Earth Observation and Geoinformation,2011,13(1):140-151.

[15]Wang Xiujun,Chen Jian.Soil Moisture Estimation based on the LST-EVI Feature Space[J].Remote Sensing Technology and Application,2014,29(1):46-53.[王秀君,陈建.基于LST-EVI特征空间的土壤水分含量反演[J].遥感技术与应用,2014,29(1):46-53.]

[16]Chen Xiuzhi,Chen Shuisen,Su Yongxian,et al.Retrieving Land Surface Temperature from AMSR-E Remote Sensing Data——A Case Study over Guangdong during Spring Cold Disaster in 2008[J].Remote Sensing Information,2011,(5):38-46.[陈修治,陈水森,苏泳娴,等.利用AMSR-E遥感数据反演地表温度——以2008年广东省春季寒害为例[J].遥感信息,2011,(5):38-46.]

[17]Gao H,Fu R,Dickinson R E,et al.A Practical Method for Retrieving Land Surface Temperature from AMSR-E over the Amazon Forest[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(1):193-199.

[18]Peng Danqing,Li Jing,Zhao Tianjie,et al.Land Surface Temperature Retrieved from Passive Microwave Data over Cold and Arid Regions[J].Journal of Glaciology and Geocryology,2009,31(2):233-238.[彭丹青,李京,赵天杰,等.基于被动微波的寒旱区地表温度反演[J].冰川冻土,2009,31(2):233-238.]

[19]Chen Xiuzhi,Li Yong,Han Liusheng,et al.Semi-empirical Model for Retrieving Land Surface Temperature based on AMSR-E Data[J].Tropical Geography,2013,33(3):250-255.[陈修治,李勇,韩留生,等.一种基于AMSR-E的地表温度半经验反演模型[J].热带地理,2013,33(3):250-255.]

[20]Mao Kebiao,Wang Daolong,Li Zirui,et al.A Neural Network Method for Retrieving Land-Surface Temperature from AMSR-E Data[J].High Technology Letters,2009,19(11):1195-1200.[毛克彪,王道龙,李滋睿,等.利用AMSR-E被动微波数据反演地表温度的神经网络算法[J].高技术通讯,2009,19(11):1195-1200.]

[21]Gao C X,Qiu S,Wu H,et al.A Neural Network based Method for Land Surface Temperature Retrieval from AMSR-E Passive Microwave Data[C]//IEEE International Geoscience and Remote Sensing Symposium(IGRSS),2013,469-472.

[22]Mao Kebiao,Shi Jiancheng,Tang Huajun,et al.A Neural Network Technique for Retrieving Land Surface Temperature from AMSR-E Passive Microwave Data[C]// IEEE International Geoscience and Remote Sensing Symposium (IGRSS),2007:4422-4425.

[23]Li Jingping.Multivariate Statistical Analysis Method and Application[M].Beijing:China Renmin University Press,2008.[李静萍.多元统计分析方法与应用[M].北京:中国人民大学出版社,2008.]

[24]Yan Jing,Shen Runping,Bao Yansong,et al.Research on the Reconstructing of MODIS LST Product of Jiangsu Province[J].Environmental Science & Technology,2014,37(1):160-167.[严婧,沈润平,鲍艳松,等.江苏地区MODIS LST产品重建研究[J].环境科学与技术,2014,37(1):160-167.]

[25]Wan Peng,Zhu Jie,Chen Yifan.The Characteristic Analysis of Digital Filter about the Average over Moving[J].Ocean Technology,1997,16(3):29-31.[万鹏,朱洁,陈贻范.移动平均法的数字滤波特性分析[J].海洋技术学报,1997,16(3):29-31.]

[26]Huang Kaiming.Research on the Parameters of Sliding Averaging for Digital Filtering[J].Journal of Jimei University (Natural Science) 2006,11(4):381-384.[黄凯明.滑动平均数字滤波参数研究[J].集美大学学报:自然科学版,2006,11(4):381-384.]

[27]Liu Z L,Wu H,Tang B H,et al.Atmospheric Corrections of Passive Microwave Data for Estimating Land Surface Temperature[J].Optics Express,2013,21(13):15654-15663.

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 李军,龚围,辛晓洲,高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[5] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[6] 冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[7] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[8] 史新,周买春. 基于Landsat 8数据的3种地表温度反演算法在三河坝流域的对比分析[J]. 遥感技术与应用, 2018, 33(3): 465-475.
[9] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[10] 郑明亮,黄方,张鸽. 基于TsHARP模型和STITFM算法的地表温度影像融合研究[J]. 遥感技术与应用, 2018, 33(2): 275-283.
[11] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[12] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
[13] 李艳,侯金亮,黄春林. 基于Copula函数的地表温度空间降尺度研究[J]. 遥感技术与应用, 2017, 32(5): 818-824.
[14] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[15] 郑飞,张殿发,孙伟伟,杨刚. 基于ASTER遥感的杭州城市热/冷岛的景观特征分析[J]. 遥感技术与应用, 2017, 32(5): 938-947.