Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (4): 809-819    DOI: 10.11873/j.issn.1004-0323.2016.4.0809
数据论文     
基于AMSR-E的全球陆表被动微波发射率数据集
邱玉宝,郭华东,石利娟,施建成
(中国科学院遥感与数字地球研究所,中国科学院数字地球重点实验室,北京 100094)
Global Land Surface Emissivity Dataset based on AMSR-E Observations
Qiu Yubao,Guo Huadong,Shi Lijuan,Shi Jiancheng
(Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China;)
 全文: PDF(7596 KB)  
摘要:

地表微波发射率表征了地物向外发射微波辐射的能力,星载被动微波发射率估算可在宏观、大尺度上对陆表微波辐射进行整体表达,是被动微波地表参数定量反演中重要基础数据,也是在大尺度上获取陆表微波辐射特征的一种途径。本数据集利用搭载在Aqua卫星上的高级微波扫描辐射计(AMSR-E)和中分辨率成像光谱仪(MODIS)的同步观测特点,采用MODIS的地表温度和大气水汽产品数据作为输入,基于考虑大气影响的发射率估算模型,生产了全球晴空条件下AMSR-E传感器运行期间(2002年6月~2011年10月)的陆表多通道双极化微波瞬时发射率。通过产品低频无线电信号影响、数据间比对、分布统计、不同地表覆盖条件的发射率特征、频率依赖和相关性研究等开展验证性分析,结果表明:瞬时发射率的动态大\,细节表达丰富,月内日变化标准差在0.02以内,其时空变化、频率依赖和相关性等符合微波理论分析和自然物理过程理解。此套数据集还包括AMSR-E全生命周期的全球陆表逐日、侯、旬、半月及月产品,可用于开展星载被动微波遥感模拟、陆面模型以及陆表温度、积雪、大气降水/水汽、可降水量等反演研究。

关键词: 被动微波遥感AMSR-E微波发射率对比验证数据集    
Abstract:

Earth surface microwave emissivity,representing the capacity of the earth's surface emitting microwave radiation outwards,is one of the key physical quantities of microwave radiometric characteristics for earthsurface.Satellite-borne passive microwave emissivity shows an overall and macroscopic expression of the surface microwave radiation on a large scale.It is important basic data for empirical parameterization acquisition in the geophysical parameters quantitative inversion from passive microwave observations,and also an approach of understanding the land surface microwave radiation on a large scale.Considering the synchronous observation characteristic of the Advanced Microwave Scanning Radiometer (AMSR-E) and Moderate Resolution Imaging Spectroradiometer (MODIS) mounted on the Aqua satellite,taking surface temperature and atmospheric water vapor data from MODIS as input data,this data set produced multi-channel microwave instantaneous emissivity through the emissivity estimation model during the operating cycle (June 2002~October 2011) of AMSR-E sensor under the global clear-sky condition.The results obtained from inter\|comparison,statistical analysis and the validation analysis from the frequency dependence and the correlation under different land covers indicate that,the dynamic range of instantaneous emissivity is larger,the monthly diurnal standard deviationare within 0.02,and the Radio Frequency Interference analysis,spatial and temporal variation,frequency dependence and correlation are in consistence with the understanding of natural physical geography process and microwave emission model understanding.The dataset,which includes daily,five-day,ten\|day,semi\|monthly and monthly global land surface products within the AMSR\|E full life span,may be used in the inversion of satellite borne passive microwave remote sensing simulation,land surface model,land surface temperature,snow parameters,precipitation,water vapor and perceptible water content etc.

Key words: Passive microwave remote sensing;AMSR\    E;Microwave emissivity;Comparative validation;Dataset
收稿日期: 2016-05-08 出版日期: 2016-10-14
:  TP 721.1  
基金资助:

国家自然科学基金(41371351和40901175),国家自然科学基金重点项目(ABCC计划,编号:41120114001)和公益性气象行业专项(GYHY201206040)。

作者简介: 邱玉宝(1978-),男,江西兴国人,副研究员,主要从事微波遥感应用研究。Email:qiuyb@radi.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邱玉宝
郭华东
石利娟
施建成

引用本文:

邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.

Qiu Yubao,Guo Huadong,Shi Lijuan,Shi Jiancheng. Global Land Surface Emissivity Dataset based on AMSR-E Observations. Remote Sensing Technology and Application, 2016, 31(4): 809-819.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.4.0809        http://www.rsta.ac.cn/CN/Y2016/V31/I4/809

[1]Prigent C,Rossow W B.Microwave Land Surface Emissivity Estimated from SSM/I Observations[J].Journal of Geophysical Research,1997,102(D18):21867-21890.

[2]Qiu Y B,Shi J C,Hallikainen M T.The AMSR-E Instantaneous Emissivity Estimation and Its Correlation,Frequency Dependency Analysis over Different Land Cover[C]//IEEE International Geoscience and Remote Sensing Symposium,2008,2:749-752.

[3]Weng F Z,Yan B H,Grody N C.A Microwave Land Emissivity Model[J].Journal of Geophysical Research Atmospheres,2001,106(D17):20115-20124.

[4]Qiu Yubao.Atmosphere Influence Analysis and Correction in Passive Microwave Remote Sensing over Land[D].Beijing:Institute of Remote Sensing Applications Chinese Academy of Sciences,2008.[邱玉宝.陆面被动微波遥感大气影响分析与校正研究[D].北京:中科院遥感应用研究所,2008.]

[5]Sreereka T R,English S J,Ed Pavelin.Assimilation of Lower Tropospheric Sounding Channels over Land at Met Office[R].Surface Properties Meeting,Toulouse,2009.

[6]Zhang Cheng,Wu Ji.Image Simulation for Ground Objects Microwave Radiation[J].Journal of Electronics & Information Technology,2007,29(11):2725-2726.[张成,吴季.地物微波辐射亮温的图像模拟方法[J].电子与信息学报,2007,29(11):2725-2726.]

[7]Prigent C,Papa F,Aires F.Global Inundation Dynamics Inferred from Multiple Satellite Observations,1993~2000[J].Journal of Geophysical Research,2007,(112):D12107.doi:10.1029/2006JD007847.

[8]English S J.Airborne Radiometric Observations of Cloud Liquid-Water Emission at 89 and 157 GHz-Application to Retrieval of Liquid-Water Path[J].Quarterly Journal of the Royal Meteorological Society,1995,121:1501-1524.

[9]English S.Estimation of Temperature and Humidity Profile Information from Microwave Radiances over Different Surface Types[J].Journal of Applied Meteorology,1999,38:1526-1541.

[10]Jones A S,Vonder H T H.Passive Microwave Remote Sensing of Cloud Liquid Water over Land Regions[J].Journal of Geophysical Research,1990,95:16673-16683.

[11]Qiu Y B,Guo H D,Shi J C,et al.An Emissivity-based Land Surface Temperature Retrieval Algorithm[C]///IEEE International Geoscience and Remote Sensing Symposium,2012:4664-4667.

[12]Fily  M,Royer A,Gotia K,et al.A Simple Retrieval Method for Land Surface Temperature and Fraction of Water Surface Determination from Satellite Microwave Brightness Temperatures in Sub-arctic Areas[J].Remote Sensing of Environment,2003,85:328-338.

[13]Gotia K,Royer A.Combination of Passive Microwave and Thermal for the Retrieval and Analysis of Microwave Emissivities and Temperature[J].IEEE Transaction on Geoscience and Remote Sensing 02,Toronto,2002 June.

[14]Shahroudi N,Rossow W.Using Land Surface Microwave Emissivities to Isolate the Signature of Snow on Different Surface Types[J].Remote Sensing of Environment,2014,152:638-653.[15]Ferraro R,Peters-Lidard C,Hernandez C,et al.An Evaluation of Microwave Land Surface Emissivities over the Continental United States to benefit GPM-era Precipitation Algorithms[J].IEEE Transaction on Geoscience and Remote Sensing,2013,51(1):378-398.

[16]Birman C,Karbou F,Mahfouf J F.Daily Rainfall Detection and Estimation over Land Using Microwave Surface Emissivities[J].Journal of Applied Meteorology and Climatology,2015,54:880-895.

[17]Shi J C,Jiang L M,Zhang L X,et al.Physically based Estimation of Bare Surface Soil Moisture with the Passive Radiometers[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(11):3145-3153.

[18]Hewison T J,English S J.Airborne Retrievals of Snow and Ice Surface Emissivity at Millimetre Wavelengths[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(4):1871-1879.

[19]Liang P,Moncet J L,Galantowicz J F,et al.Development of a Global Dynamic AMSR-E Land Surface Emissivity Database[R].1st Workshop on Remote Sensing and Modeling of Surface Properties,2006.

[20]Shi L J,Qiu Y B,Niu J J,et al.The Construction and Application of the AMSR-E Global Microwave Emissivity Database[C]//IOP Conf.Series:Earth and Environmental Science,2014,17(1):682-691.

[21]Moncet J L,Galantowicz J F,Liang P,et al.A Land Surface Emissivity Database for Conically Scanning Microwave Sensors[C]//The 14th International TOVS Study Conference,2006,P1.27.

[22]Galantowicz J F,Liang  P,Moncet J L.An AMSR-E Land Surface Microwave Emissivity Database[C]//IEEE International Geoscience and Remote Sensing Symposium,2006.doi:10.1109/IGARSS.2006.827.

[23]Lin B,Minnis P.Temporal Variations of Land Surface Microwave Emissivities over the Atmospheric Radiation Measurement program Southern Great Plains Site[J].Journal of Applied Meteorology,2000,39:1103-1116.〖HJ1.9mm〗

[24]Choudhury B J.Reflectivities of Selected Land Surface Types at 19 and 37 GHz from SSM/I Observations[J].Remote Sensing of Environment,1993,46:1-17.

[25]Xiang X,Smith E A.Feasibility of Simultaneous Surface Temperature-emissivity Retrieval Using SSM/I Measurements from HAPEX-Sahel[J].Journal of Hydrology,1997,188(1):330-360.

[26]Moncet J L,Liang P,Galantowicz J F,et al.Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control[J].Journal of Geophysical Research,2011,(116):D16104.doi:10.1029/2010JD015429.

[27]Galantowicz J F,Moncet J L,Liang P,et al.Subsurface Emission Effects in AMSR-E Measurements:Implications for Land Surface Microwave Emissivity Retrieval[J].Journal of Geophysical Research,2011,(116):D17105.doi:10.1029/2010JD15431.

[28]Norouzi H,Temimi M,Rossow W B,et al.2013.AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity[DB/OL].Boulder,Colorado USA:NASA DAAC at the National Snow and Ice Data Center.

[29]Norouzi H,Rossow W,Temimi M.Using Microwave Brightness Temperature Diurnal Cycle to Improve Emissivity Retrievals over Land[J].Remote Sensing of Enviroument,2002,123:470-482.

[30]Karbou F.Two Microwave Land Emissivity Parameterizations Suitable for AMSU Observations[J].IEEETransaction on Geoscience and Remote Sensing,2005,43(8):1788-1795.

[31]Liebe H J.MPM:An Atmospheric Millimeter-wave Propagation Model[J].International Journal of Infrared & Millimeter Waves,1989,10(6):631-650.

[32]Rosenkranz P W.Water Vapor Microwave Continuum Absorption:A Comparison of Measurements and Models[J].Radio Science,1998,33(4):919-928.

[33]Peter A,Wentz F.Updated Daily,AMSR-E/Aqua L2A Global Swath Spatially-resampled Brightness Temperatures V002,August 2006[DB/OL].Boulder,Colorado USA:National Snow and Ice Data Center.Digital media.

[34]Wan Z,Y.Zhang,Q ,Z.-L.Li,Validation of the Land-surface Temperature Products Retrieveds from Terra Moderate Resolution Imageing Spectroradiometer Data[J].Remote Sensing Environment,2002,83:163-181.

[35]Brodzik M J,Knowles K.EASE-Grid:A Versatile Set of Equal-area Projections and Grids[C]//International Conference on Discrete Global Grids,National Center for Geographic Information and Analysis(NCGIA),Santa Barbara,CA,2000,3:26-28.

[36]Qiu Yubao,Shi Lijuan,Shi Jiancheng,et al.Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing[J].Spectroscopy and Spectral Analysis,2016,36(2):310-315.[邱玉宝,石利娟,施建成,等.大气对星载被动微波影响分析研究[J].光谱学与光谱分析,2016,36(2):310-315.]

[37]Prigent C,Liang P,Moncet J L,et al.Evaluation of Modeled Microwave Land Surface Emissivities with Satellite-based Estimates[J].Journal of Geophysical Research,2015,(120):2706-2718.

[38]Li L,Njoku E G,Im E,et al.A Preliminary Survey of Radio-frequency Interference over the U.S.In Aqua AMSR-E Data[J].IEEE Transaction on Geoscience and Remote Sensing,2004,42(2):259-387.

[39]Karbou F,Prigent C,Eymard L,et al.Microwave Land Emissivity Calculations Using AMSU Measurements[J].IEEE Transaction on Geoscience and Remote Sensing,2005,43(5):948-959.

[40]Ramannkutty N,Graumlich L.Global Land-Cover Change:Recent Progress,Remaining Challenges[M].Global Change-The IGBP Series,2006:9-39.

[41]Shi Lijuan.Study of the Microwave Emissivity Characteristics[D].Fuxin:Liaoning Technical University,2013.[石利娟.被动微波陆表发射率特性研究[D].阜新:辽宁工程技术大学,2013.

[42]Shi Lijuan,Qiu Yubao.Study of the Microwave Emissivity Characteristics of Vegetation over the Northern Hemisphere[J].Spectroscopy and Spectral Analysis,2013,33(5):1157-1162.[石利娟,邱玉宝.北半球植被冬夏两季微波发射率特征分析[J].光谱学与光谱分析,2013,33(5):1157-1162.]

[43]Zhang Yongpan,Jiang Lingmei,Qiu Yubao,et al.Study of the Microwave Emissivity Characteristics over Different Land Cover Types[J].Spectroscopy and Spectral Analysis,2010,30(6):1446-1451.[张勇攀,蒋玲梅,邱玉宝,等.不同地物类型微波发射率特征分析[J].光谱学与光谱分析,2010.30(6):1446-1451]

[44]Zhang Yongpan.The Mixed Pixel Impact on the Snow Water Equivalent Retrieval Using Passive Microwave Remote Sensing[D].Beijing:Beijing Normal University,2010.[张勇攀.被动微波混合像元对雪当量反演影响研究[D].北京:北京师范大学,2013.]

[45]Mtzler C.Passive Microwave Signatures of Landscapes in Winter[J].Meteorology and Atmospheric Physics,1994,(54):241-260.

[46]Shi L J,Qiu Y B.Analysis of the Relationship between Microwave Emissivity and NDVI/MVI/Soil Moisture over Tibetan Plateau,China[C]//IEEE International Geoscience and Remote Sensing Symposium,2012,678-681.

[47]Huete A,Justice C.Van Leeuven L.MODIS Vegetation Index(MOD13) Algorithm Theoretical Basis Document,April 30,1999.

[48]Shi J C,Jackson T,Tao J,et al.Microwave Vegetation Indices for Short Vegetation Covers from Satellite Passive Microwave Sensor AMSR-E[J].Remote Sensing of Environment,2008,(112):4285-4300.

[49]Qiu Y B,Shi L J,Wu W B.Study of the Microwave Emissivity Characteristics over Gobi Desert,IOP Conference Series:Earth and Environmental Science[C]//Volume 17,Issue 1,DOI:10.1088/1755-1315/17/1/012249.

[1] 胡同喜,赵天杰,施建成,谷金枝. AMSR-E与AMSR2被动微波亮温数据交叉定标[J]. 遥感技术与应用, 2016, 31(5): 919-924.
[2] 李梦云,黄方. 基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究[J]. 遥感技术与应用, 2016, 31(2): 342-348.
[3] 王琦,柴琳娜,赵少杰,张涛. 基于多角度微波辐射亮温数据反演冬小麦光学厚度[J]. 遥感技术与应用, 2015, 30(3): 424-430.
[4] 蒋璐媛,肖鹏峰,冯学智,李云,朱榴骏. 基于亚分数混淆矩阵的中国典型区大尺度土地覆盖数据集评价[J]. 遥感技术与应用, 2015, 30(2): 353-363.
[5] 陈洁,武胜利. MWRI与AMSR-亮温数据在极地冰盖区的对比分析[J]. 遥感技术与应用, 2014, 29(5): 752-760.
[6] 王少波,严卫,艾未华,王蕊,刘天宁. 基于微波辐射计的海面溢油监测研究[J]. 遥感技术与应用, 2014, 29(1): 94-99.
[7] 杨俊涛,蒋玲梅,潘金梅,张立新. 基于GOES静止气象卫星和AMSR-E雪盖融合监测方法研究[J]. 遥感技术与应用, 2013, 28(5): 920-927.
[8] 李昂,陆其峰,杨晓峰,张建伟. AMSR-E卫星反演土壤湿度与ECWMF,NECP再分析土壤湿度比较分析[J]. 遥感技术与应用, 2013, 28(4): 666-673.
[9] 谢燕梅,晋锐,杨兴国. AMSR-E亮温监测中国近地表冻融循环算法研究[J]. 遥感技术与应用, 2013, 28(2): 182-191.
[10] 任浩然,苗洪利,周晓光,王桂忠,王云海,张杰. 逆大气压校正结果对海况偏差的影响[J]. 遥感技术与应用, 2013, 28(2): 200-204.
[11] 黄二辉,杨燕明. 基于PMDB数据集的海表温度反演误差统计分析[J]. 遥感技术与应用, 2012, 27(6): 880-886.
[12] 陈修治,陈水森,苏泳娴,李 丹,韩留生. 基于被动微波遥感的2008年广东省春季低温与典型作物寒害研究[J]. 遥感技术与应用, 2012, 27(3): 387-395.
[13] 耿继进,张 晖. 基于GIS的房地产批量评估数据库构建研究—以深圳市为例[J]. 遥感技术与应用, 2012, 27(3): 479-486.
[14] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2012, 27(1): 1-6.
[15] 何文英,陈洪滨,孙强,王旻燕. 青藏高原地表微波比辐射率的反演与分析[J]. 遥感技术与应用, 2011, 26(6): 735-741.