Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (5): 855-863    DOI: 10.11873/j.issn.1004-0323.2016.5.0855
模型与反演     
基于SAR数据的城市空气动力学粗糙度研究
沙敏敏1,2,张风丽1,符喜优1,王国军1,邵芸1
(1.中国科学院遥感与数字地球研究所,北京 100101;
2.中国科学院大学,北京 100049)
Research on Aerodynamic Roughness in Urban Areas based on SAR Data
Sha Minmin1,2,Zhang Fengli1,Fu Xiyou1,Wang Guojun1,Shao Yun1
(1.Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences,Beijing 100101,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(6238 KB)  
摘要:

空气动力学粗糙度是表征下垫面空气动力学特征的重要参数。雷达遥感是空气动力学粗糙度研究的一种有效手段。利用2006~2011年的22景多时相ALOSPALSAR数据,分析了北京市北部地区后向散射系数的方向及尺度特征,同时利用多层风速\,风向观测资料计算得到了空气动力学粗糙度,并在不同尺度和方向上分析了两者的相关性,得出上风向扇形区域半径为2 500 m,夹角为30°时扇形区域内的后向散射系数与空气动力学粗糙度的相关性最大,表明SAR图像可以有效表征城市下垫面地表的空气动力学粗糙特性。这一结论为城市空气动力学粗糙度雷达遥感反演提供了重要基础,将为大气边界层模型和区域气候模型提供更精确的输入。

关键词: SAR城市后向散射系数空气动力学粗糙度相关性    
Abstract:

Aerodynamic roughness is a very important parameter to represent the aerodynamic characters in urban areas.Radar remote sensing is considered to be an effective means for aerodynamic roughness retrieval.This paper analyzed the direction features and scale characteristics of backscattering coefficient in northern Beijing by using 22 ALOSPALSAR images from 2006 to 2011.And aerodynamic roughness was calculated by the gradient data of wind speed and direction.The relationship between aerodynamic roughness and backscattering coefficient was analyzed in different scales and orientations.The results showed that the correlation coefficient was reached maximum when the radius of windward sector domain was 2 500 m and included angle was 30°.It indicated that the SAR images can effectively characterize the aerodynamic characters.The resultsprovidedimportant basis for the inversion of aerodynamic roughness by using SAR images,which will provide more accurate parameters for regional climate model and atmospheric boundary layer model.

Key words: SAR    Urban areas    Aerodynamic roughness    Backscattering coefficient    Correlation
收稿日期: 2015-09-18 出版日期: 2016-11-25
:  TP 79  
基金资助:

国家自然科学基金资助项目“城市下垫面粗糙特性时空特征雷达遥感监测及气候环境影响研究”(41671359),“复杂散射机制场景的SAR图像认知方法研究”(61471358),“可控环境下多层介质目标微波特性全要素测量与散射机理建模”(41431174),中国科学院知识创新工程重要方向项目“典型地物微波特性知识库构建与开发”(KZCX2-EW-320),国家863计划项目“典型地物目标后向散射特性数据库”(2011AA120403)。

通讯作者: 张风丽(1978- ),女,山东泰安人,副研究员,主要从事城市雷达遥感方面的研究。Email:zhangfl@radi.ac.cn。   
作者简介: 沙敏敏(1990- ),女,山东德州人,硕士研究生,主要从事城市下垫面粗糙度特性方面的研究。Email:shamin0656@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
沙敏敏
张风丽
符喜优
王国军
邵芸

引用本文:

沙敏敏,张风丽,符喜优,王国军,邵芸. 基于SAR数据的城市空气动力学粗糙度研究[J]. 遥感技术与应用, 2016, 31(5): 855-863.

Sha Minmin,Zhang Fengli,Fu Xiyou,Wang Guojun,Shao Yun. Research on Aerodynamic Roughness in Urban Areas based on SAR Data. Remote Sensing Technology and Application, 2016, 31(5): 855-863.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.5.0855        http://www.rsta.ac.cn/CN/Y2016/V31/I5/855

[1]Crago R D,Okello W,Jasinski M F.Equations for the Drag Force and Aerodynamic Roughness Length of Urban Areas with Random Building Heights[J].Boundary-Layer Meteorology,2012,145(3):423-437.

[2]Ketterer C,Gangwisch M,Fr hlich D,et al.Comparison of Selected Approaches for Urban Roughness Determination based on Voronoi Cells[J].International Journal of Biometeorology,2016,(7):1-10.

[3]Hu Zhangbao,Yu Bingfeng.Review on Methods Calculating Aerodynamic Parameters over Urban Underlying Surface[J].Journal of Meteorology and Environment,2008,24(5):55-60.[胡张宝,俞炳丰.城市下垫面空气动力学参数确定方法综述[J].气象与环境学报,2008,24(5):55-60.]

[4]Sugawara H.Measurement of Roughness Parameters over Urban Heterogeneous Canopy[C]//9th International Conference on Urban Climate,Toulouse,France,2015:5-7.

[5]Greeley R,Blumberg D G.Preliminary Analysis of Shuttle Radar Laboratory(SRL-1) Data to Study Aeolian Features and Processes[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(4):927-933.

[6]Grimmond C S B,King T S,Roth M,et al.Aerodynamic Roughness of Urban Areas Derived from Wind Observations[J].Boundary-layer Meteorology,1998,89(1):1-24.

[7]Remond A,Deroin J P.Empirical and T heoretical Backscattering Behavior as a Function of Roughness for Arid Land Surfaces[J].IEEE International Geoscience and Remote Sensing Symposium,1997,(4):1612-1614.

[8]Le Hegarat-Mascle S,Zribi M,Marticorena B,et al.Use of ERS/SAR Measurements for Soil Geometric and Aerodynamic Roughness Estimation in Semi-arid and Areas[J].IEEE International Geoscience and Remote Sensing Symposium,2003,(4):2272-2274.

[9]SaatchiS,Rodriguez E.Relating Vegetation Aerodynamic Roughness Length to Interferometric SAR Measurements[J].IEEE International Geoscience and Remote Sensing Symposium,1999,(3):1643-1645.

[10]Langkamp T.Contributions Towards a Downscaling Scheme for Urban Climate Modeling Integrating Mobile Measurements and Improved Roughness Representation for Hamburg[D].Germany:University of Hamburg,2013.

[11]Basly L,Cauneau F,Ranchin T,et al.ERS SARImagery for Urban Climate Studies[C]//Third ERS Symposium on Space at the Service of Our Environment,Florence,Italy,1997:233-236.

[12]Bidaut S,Ranchin T,Wald L.Mapping the Aerodynamic Roughness Length Using SAR Images[C]//25th Symposium of the European Association of Remote Sensing Laboratorie,2006:145-150.

[13]Zoran M.Remote Sensing Data for Urban Air Quality Assessment[C]//6th Conference on Optics,2000:729-735.

[14]Jeyachandran I,Burian S J,Stetson S W.Estimating Urban Canopy Parameters Using Synthetic Aperture Radar Data[J].Journal of Applied Meteorology and Climatology,2009,49(4):732-747.

[15]Zoran M,Pavelescu G,Nkolae D.N,et al.Surface Biophysical Parameters Derived from Remote Sensing Data for Urban Changes Assessment[C]//2th Environmental Physics Conference,Alexandria,2006:185-195.

[16]Xu Yangyang,Liu Shuhua,Hu Fei,et al.Influence of Beijing Urbanization on the Characteristics of Atmospheric Boundary Layer[J].Chinese Journal of Atmospheric Sciences,2009,33(4):859-864.[徐阳阳,刘树华,胡非,等.北京城市化发展对大气边界层特性的影响[J].大气科学,2009,33(4):859-864.]

[17]Peng Zhen.Statistical Analysis of Observation Data at Beijing 325 m Meteorological Tower[D].Beijing:Graduate University of Chinese Academy of Sciences,2005.[彭珍.北京325 m气象塔观测资料的统计分析[D].北京:中国科学院研究生院,2005.]

[18]Li Qian,Liu Huizhi,Hu Fei,et al.The Determination of the Aerodynamic Parameters over Urban Land Surface[J].Climatic and Environmental Research,2003,8(4):443-450.[李倩,刘辉志,胡非,等.城市下垫面空气动力学参数的确定[J].气候与环境研究,2003,8(4):443-450.]

[19]Li Qian,Liu Huizhi,Hu Fei,et al.Characteristic of the Urban Boundary Layer Under Strong Wind Condition in Beijing City[J].Journal of the Graduate School of the Chinese Academy of Sciences,2004,21(1):40-44.[李倩,刘辉志,胡非,等.大风天气下北京城市边界层阵风结构特征[J].中国科学院研究生院学报,2004,21(1):40-44.]

[20]Zhu Caiying,Zhang Renhua,Wang Jinfeng,et al.The Retrieval of Two-dimensional Distribution of the Earth's Surface Aerodynamic Roughness Using SAR Image and TM Thermal Infrared Image[J].Science in China,2004,34(4):385-393.[朱彩英,张仁华,王劲峰,等.运用SAR图像和 TM 热红外图像定量反演地表空气动力学粗糙度的二维分布[J].中国科学,2004,34(4):385-393.]

[21]Bechtel B,Langkamp T,Ament F,et al.Towards an Urban Roughness Parameterisation Using Interferometric SAR data Taking the Metropolitan Region of Hamburg as an Example[J].Meteorologische Zeitschrift,2011,20(1):29-37.

[22]Gao Zhiqiu,Bian Lingen,Lu Changgui,et al.Estimation of Aerodynamic Parameters in Urban Areas[J].Journal of Applied Meteorological Science,2002,13(Sup.):26-33.[高志球,卞林根,逯昌贵,等.城市下垫面空气动力学参数的估算.[J].应用气象学报,2002,13(增刊):26-33.]



[1] 王鹏龙,高峰,黄春林,宋晓谕,王宝,魏彦强,牛艺博. 面向SDGs的城市可持续发展评价指标体系进展研究[J]. 遥感技术与应用, 2018, 33(5): 784-792.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 李姣姣,刘玉,陈锟山. 基于香农熵的极化SAR相干矩阵信息量评价#br#[J]. 遥感技术与应用, 2018, 33(5): 842-849.
[5] 王常颖,田德政,韩园峰,隋毅,初佳兰. 基于属性差决策树的全极化SAR影像海冰分类[J]. 遥感技术与应用, 2018, 33(5): 975-982.
[6] 郭欣,赵银娣. 基于Sentinel-1A SAR的湖南省宁乡市洪水监测[J]. 遥感技术与应用, 2018, 33(4): 646-656.
[7] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[8] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[9] 卢惠敏,李飞,张美亮,杨刚,孙伟伟. 景观格局对杭州城市热环境年内变化的影响分析[J]. 遥感技术与应用, 2018, 33(3): 398-407.
[10] 张程,张红,王超. 基于PCDM香农熵的全极化SAR图像船舶目标检测方法[J]. 遥感技术与应用, 2018, 33(3): 499-507.
[11] 包永康,周艳莲,单良. 叶绿素指数与最大羧化速率相关性研究[J]. 遥感技术与应用, 2018, 33(2): 267-274.
[12] 刘建歌,慕德俊. 基于SAR影像海冰动态特征的提取方法[J]. 遥感技术与应用, 2018, 33(1): 55-60.
[13] 张王菲,陈尔学,李增元,赵磊,姬永杰. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6): 983-997.
[14] 周晓宇,陈富龙. 四川大熊猫栖息地PALSAR时序数据森林覆盖动态监测研究[J]. 遥感技术与应用, 2017, 32(6): 1100-1106.
[15] 扎西央宗,李林,卓玛,冯岩,李学东,白玛央宗. 西藏年楚河流域冰川变化监测方法研究[J]. 遥感技术与应用, 2017, 32(6): 1126-1131.