Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (5): 879-885    DOI: 10.11873/j.issn.1004-0323.2016.5.0879
模型与反演     
基于海岸带高光谱成像仪影像的太湖蓝藻水华和水草识别
朱庆1,2,李俊生2,张方方2,申茜2,林卉1,王李娟1,朱琳3
(1.江苏师范大学测绘学院,江苏 徐州 221116;
2.中国科学院遥感与数字地球研究所数字地球重点实验室,北京 100094;
3.首都师范大学资源环境与旅游学院,北京 100048)
Distinguishing Cyanobacteria Bloom and Aquatic Plants in Lake Taihu based on Hyperspectral Imager for the Coastal Ocean  Images
Zhu Qing1,2,Li Junsheng2,Zhang Fangfang2,Shen Qian2,Lin Hui1,Wang Lijuan1,Zhu Lin3
(1.College of Geodesy and Geomatics,Jiangsu Normal University,Xuzhou 221116,China;
2.Key Laboratory of Digital Earth,Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences,Beijing 100094,China;
3.Resource Environment and Tourism College,Capital Normal University,Beijing 100048,China)
 全文: PDF(3720 KB)  
摘要:

水华与水草的同步监测对于研究湖泊水环境、生态特性以及水循环具有重要意义,相对于传统监测方法如实地调查,利用遥感手段具有大范围、长时间周期、高效率以及低成本等优势。基于海岸带高光谱成像仪HICO(Hyperspectral Imager for the Coastal Ocean)影像,利用叶绿素a光谱指数和藻蓝蛋白基线的水华和水草识别模型,提取太湖水华和水草分布图,经过检验,水华和水草的平均提取精度为93%和95%;通过水华和水草分布图的叠加分析了2010~2014年太湖水华和水草的分布规律,与相关文献的分析结果一致,进一步证实了识别方法的可靠性;将平均阈值与最佳阈值进行对比分析,提取水华与水草面积的精度分别为75.7%和84%,在对精度要求不高但对效率要求较高的情况下,可以利用平均阈值提取水华和水草,便于实现水华和水草的自动化提取及批处理。

关键词: 太湖水华水草叶绿素a光谱指数藻蓝蛋白基线    
Abstract:

The synchronous monitoring for the cyanobacteria bloom and aquatic plants is of great significance for the study of lake water environment、ecology and the water cycle.Compared with traditional monitoring methods,for instance,field investigation,using remote sensing technology with the advantages of large scope,long cycle,high efficiency and low cost.A model based on “Chlorophyll a Spectral Index” and “Baseline of Phycocyanin” was built to distinguish cyanobacteria bloom and aquatic plants in Lake Taihu by using Hyperspectral Imager for the Coastal Ocean (HICO) images.The average accuracy of cyanobacteria bloom and aquatic plants are 93% and 95% respectively.By overlapping the distribution maps of cyanobacteria bloom and aquatic plants,the distribution rules of cyanobacteria bloom and aquatic plants in Lake Taihu from 2010 to 2014 were analyzed,which are consistent with the former results in the literatures.The average thresholds were used to extract cyanobacteria bloom and aquatic plants,and the accuracy are 75.7% and 84.0% respectively.If the efficiency is more desired than accuracy,then average thresholds can be used to extract cyanobacteria bloom and aquatic plants.Which is convenient for realizing batch processing and the automation extraction of cyanobacteria bloom and aquatic plants.

 

Key words: Lake Taihu    Cyanobacteria bloom    Aquatic plants    Chlorophyll a spectral index    Baseline of phycocyanin
收稿日期: 2015-07-06 出版日期: 2016-11-25
:  X 87  
基金资助:

国家自然科学基金项目“基于软分类的太湖水体叶绿素a浓度反演与时空变化分析”(41471308)。

通讯作者: 李俊生(1979-),男,吉林吉林人,博士,副研究员,主要从事水环境遥感研究。Email:lijs@radi.ac.cn。   
作者简介: 朱庆(1990-),男,江苏南京人,硕士研究生,主要从事水华水草识别研究。Email:15190660592@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱庆
李俊生
张方方
申茜
林卉
王李娟
朱琳

引用本文:

朱庆,李俊生,张方方,申茜,林卉,王李娟,朱琳. 基于海岸带高光谱成像仪影像的太湖蓝藻水华和水草识别[J]. 遥感技术与应用, 2016, 31(5): 879-885.

Zhu Qing,Li Junsheng,Zhang Fangfang,Shen Qian,Lin Hui,Wang ijuan,Zhu Lin. Distinguishing Cyanobacteria Bloom and Aquatic Plants in Lake Taihu based on Hyperspectral Imager for the Coastal Ocean  Images. Remote Sensing Technology and Application, 2016, 31(5): 879-885.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.5.0879        http://www.rsta.ac.cn/CN/Y2016/V31/I5/879

[1]Wu Di.Monitoring and Evaluation of Inland Water Body Algae and Eutrophication[D].Beijing:Center for Earth Observation and Digital Earth,Chinese Academy of Sciences,2011.[吴迪.内陆水体藻类及富营养化遥感监测与评价研究[D].北京:中国科学院对地观测与数字地球科学中心,2011.]

[2]Duan Hongtao,Zhang Shouxuan,Zhang Yuanzhi.Cyanobacteria Bloom Monitoring with Remote Sensing in Lake Taihu[J].Journal of Lake Sciences,2008,20(2):145-152.[段洪涛,张寿选,张渊智.太湖蓝藻水华遥感监测方法[J].湖泊科学,2008,20(2):145-152.]

[3]Ma Ronghua,Kong Fanxiang,Duan Hongtao,et al.Spatio-Temporal Distribution of Cyanobacteria Blooms based on Satellite Imageries in Lake Taihu,China[J].Journal of Lake Sciences,2008,20(6):687-694.[马荣华,孔繁翔,段洪涛,等.基于卫星遥感的太湖蓝藻水华时空分布规律认识[J].湖泊科学,2008,20(6):687-694.]

[4]Hu C M,Lee Z P,Ma R H,et al.Moderate Resolution Imaging Spectroradiometer (MODIS) Observations of Cyanobacteria Blooms in Taihu Lake,China[J].Journal of Geophysical Research,2010,115(4):13-32.

[5]Lin Yi,Pan Chen,Chen Yingying,et al.Recognition of Cyanobacteria Bloom based on Spectral Analysis of Remote Sensing Imagery[J].Journal of Tongji University,2011,39(8):1247-1252.[林怡,潘琛,陈映鹰,等.基于遥感影像光谱分析的蓝藻水华识别方法[J].同济大学学报,2011,39(8):1247-1252.]

[6]Xia Xiaorui,Wei Yuchun,Xu Ning,et al.Decision Tree Model of Extracting Blue-Green Algal Blooms Information based on Landsat TM/ETM + Imagery in Lake Taihu[J].Journal of Lake Sciences,2014,26(6):907-915.[夏晓瑞,韦玉春,徐宁,等.基于决策树的Landsat TM/ETM+图像中太湖蓝藻水华信息提取[J].湖泊科学,2014,26(6):907-915.]

[7]Zhang Shouxuan,Duan Hongtao,Gu Xiaohong .Remote Sensing Information Extraction of Hydrophytes based on the Retrieval of Water Transparency in Lake Taihu,China[J].Journal of Lake Sciences,2008,20(2):184-190.[张寿选,段洪涛,谷孝鸿.基于水体透明度反演的太湖水生植被遥感信息提取[J].湖泊科学,2008,20(2):184-190.]

[8]Wolter P T,Johnston C A,Niemi G J.Mapping Submergent Aquatic Vegetation in the US Great Lakes Using QuickBird Satellite Data[J].International Journal of Remote Sensing,2005,26(23):5255-5274.

[9]Pu R L,Bell S.A Protocol for Improving Mapping and Assessing of Seagrass Abundance along the West Central Coast of Florida Using Landsat TM and EO-1 ALI/Hyperion Images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2013,83:116-129.

[10]Pu R L,Bell S,Meyer C,et al.Mapping and Assessing Seagrass along  the Western Coast of Florida Using Landsat TM and EO-1 ALI/Hyperion Imagery[J].Estuarine,Coastal and Shelf Science,2012,115:234-245.

[11]Liu Wenjie .Inland Lakes Algal Blooms Remote Sensing Monitoring and Evaluation[D].Beijing:China University of Geosciences,2011.[刘文杰.内陆湖泊蓝藻水华的遥感监测与评价研究[D].北京:中国地质大学,2011.]

[12]Xu Xin.Temporal and Spatial Distribution of Blue-Green Algae and Its Meteorological Effection in Eutrophication Lakes based on MODIS Images[D].Nanjing:Nanjing Normal University,2012.[徐昕.基于MODIS 的富营养化湖泊蓝藻水华时空分布及气象影响分析[D].南京:南京师范大学,2012.]

[13]Lou Mingjing,Xing Qianguo,Shi Ping.Hyperspectral Remote Sensing for Coastal Zone and Hyperspectral Imager for the Coastal Ocean (HICO)[J].Remote Sensing Technology and Application,2013,28(4):627-632.[娄明静,邢前国,施平.海岸带高光谱遥感与近海高光谱成像仪(HICO)[J].遥感技术与应用,2013,28(4):627-632.]

[14]Li Junsheng,Wu Di,Wu Yuanfeng,et al.Identification of Algae-bloom and Aquatic Macrophytes in Lake Taihu from In-situ Measured Spectra Data[J].Journal of Lake Sciences,2009,21(2):215-222.[李俊生,吴迪,吴远峰,等.基于实测光谱数据的太湖水华和水生高等植物识别[J].湖泊科学,2009,21(2):215-222.]

[15]Qi L,Hu C M,Duan H T,et al.A Novel MERIS Algorithm to Derive Cyanobacterial Phycocyanin Pigment Concentrations in a Eutrophic Lake:Theoretical Basis and Practical Considerations[J].Remote Sensing of Environment,2014,154:298-317.

[16]Oyama Y,Matsushita B,Fukushima T.Distinguishing Surface Cyanobacterial Blooms and Aquatic Macrophytes Using Landsat/TM and ETM+ Shortwave Infrared Bands[J].Remote Sensing of Environment,2015,157:35-47.

[17]Kudela R M,Palacios S L,Austerberry D C,et al.Application of Hyperspectral Remote Sensing to Cyanobacterial Blooms in Inland Waters[J].Remote Sensing of Environment,2015,167:196-205.

[1] 程春梅,韦玉春,王国祥,张静,夏晓瑞. 使用光谱平滑提高浑浊水体叶绿素a浓度估算模型的应用精度[J]. 遥感技术与应用, 2013, 28(6): 941-948.
[2] 李亚春,王净,谢志清,谢小萍. 多源遥感影像融合在太湖蓝藻监测中的应用[J]. 遥感技术与应用, 2013, 28(4): 569-575.
[3] 王嘉楠,叶勤,林怡. 不同大气校正方法对中小湖泊蓝藻遥感动态监测的影响[J]. 遥感技术与应用, 2013, 28(1): 157-164.
[4] 王甡,江南,胡斌,魏清宇. 太湖蓝藻水华遥感监测信息系统设计及其关键技术[J]. 遥感技术与应用, 2009, 24(3): 304-311.
[5] 梅长青,王心源,彭鹏. 应用MODIS数据监测巢湖蓝藻水华的研究[J]. 遥感技术与应用, 2008, 23(3): 328-332.