Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (5): 958-965    DOI: 10.11873/j.issn.1004-0323.2016.5.0958
遥感应用     
基于多源数据的禹城农田生态系统冬小麦生育期识别方法比较研究
冯艾琳1,何洪林2,刘利民1,任小丽2,张黎2,葛蓉2,3,赵凤华2
(1.沈阳农业大学农学院,辽宁 沈阳 110866;
2.中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室,北京 100101;
3.中国科学院大学,北京 100049)
A Comparison of Multiple Phenology Data Sources for Estimating the Main Phenological Phases of Winter Wheat in Yucheng Station
Feng Ailin1,He Honglin2,Liu Limin1,Ren Xiaoli2,Zhang Li2,Ge Rong2,3,Zhao Fenghua2
(1.College of Agriculture,Shenyang Agriculture University,Shenyang 110866,China;
2.Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences,Beijing 100101,China;
3.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(3479 KB)  
摘要:

多源数据与其技术方法逐渐被应用于植被物候的研究当中,但基于多源数据物候识别方法间的差异性比较及定量化评估工作还有待加强。以山东禹城农田生态系统为例,探讨了基于多源数据,NDVI、EVI、数字相机图片、碳通量数据(NEE)以及人工实测数据获取的冬小麦主要生育日期的结果进行差异比较及定量化评估。结果表明:①通过碳通量数据获取的主要生育日期的计算结果与人工实测结果最接近,各阶段差异均<3 d;通过数字相机图片获取的结果仅次于通过碳通量数据获取的结果,而通过遥感数据NDVI、EVI获取的结果与人工实测结果差距最大;②通过NDVI、EVI两种数据获取的冬小麦主要生育期结果具有极显著的相关性,最高达到R2=0.857(P<0.001);③基于多源数据获取的冬小麦主要生育期的计算结果,均显示出禹城站冬小麦返青期提前,蜡熟期推迟,生长季长度变长的年际变化特征。

 

关键词: 遥感数字相机净生态系统碳交换量(NEE)冬小麦物候期    
Abstract:

Multi\|source data and various technological methods are used in the study of vegetation phenology.But the differences of various phenological methods based on multi-source data still need to be explored.We initiated research on winter wheat field ecosystem northern China in Yucheng City of Shandong Province.Here we explored the differences of the main phenological phases of winter wheat obtained from multi\|source data:normalized difference vegetation index,enhanced vegetation index,digital camera,carbon flux data and field-measured data.The main phenological phases of winter wheat are the date of green-up,maturity,and the length of growing season.We found the phenological phases of winter wheat obtained from carbon flux data are the nearest to the result of field-measured,and the differences of various periods are less than 3d.The results obtained from the digital camera are poor than the carbon flux data,and the remote sensing data (NDVI and EVI) are the worst.The results of phenological phases of winter wheat obtained by NDVI and EVI have extremely significant correlation,and the period of green-up has the strongest correlation (R2=0.857,P<0.001).All the results of growth period of winter wheat based on multi\|source data showed that the dates of green-up are advanced,maturity are delayed,and the lengths of growing season are longer than before.

Key words: Remote sensing    Digital camera    Net Ecosystem Exchange(NEE)    Winter wheat    Growth stage
收稿日期: 2015-09-29 出版日期: 2016-11-25
:  S 565  
基金资助:

中国科学院战略性先导科技专项(XDA05050600),国家科技支撑计划项目(2013BAC03B00),国家重大科学研究计划课题(2015CB954102)。

通讯作者: 何洪林(1971-),男,湖南娄底人,研究员,主要从事生态信息学、遥感与地理信息系统应用、生态系统碳循环研究。Email:hehl@igsnrr.ac.cn。   
作者简介: 冯艾琳(1990-),女,辽宁沈阳人,助理工程师,主要从事生态遥感研究。Email:fengailin1990@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯艾琳
何洪林
刘利民
任小丽
张黎
葛蓉
赵凤华

引用本文:

冯艾琳,何洪林,刘利民,任小丽,张黎,葛蓉,赵凤华. 基于多源数据的禹城农田生态系统冬小麦生育期识别方法比较研究[J]. 遥感技术与应用, 2016, 31(5): 958-965.

Feng Ailin,He Honglin,Liu Limin,Ren Xiaoli,Zhang Li,Ge Rong,Zhao Fenghua. A Comparison of Multiple Phenology Data Sources for Estimating the Main Phenological Phases of Winter Wheat in Yucheng Station. Remote Sensing Technology and Application, 2016, 31(5): 958-965.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.5.0958        http://www.rsta.ac.cn/CN/Y2016/V31/I5/958

[1]Parmesan C,Yohe G.A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems[J].Nature,2003,421:37-42.

[2]Grimm N B,Faeth S H,Golubiewski N E,et al.Global Change and the Ecology of Cities[J].Science,2008,319:756-760.

[3]Lucht W,Prentice I C,Myneni R B,et al.Climatic Control of the High Latitude Vegetation Greening Trend and Pinatubo Effect[J].Science,2002,296:1687-1689.

[4]Chen X,Hu B,Yu R.Spatial and Temporal Variation of Phenological Growing Season and Climate Change Impacts in Temperate Eastern China[J].Global Change Biology,2005,11:1118-1130.

[5]Penuelas J,Filella I.Responses to a Warming World[J].Science,2001,294:793-795.

[6]Morisette J T,Richardson A D,Knapp A K,et al.Tracking the Rhythm of the Seasons in the Face of Global Change:Phenological Research in the 21st Century[J].Frontiers Ecology Environment,2009,7:253-260.

[7]Leith H L.Phenology and Seasonality Modeling[M].New York:Springer-Verlag,1974.

[8]White M A,Nemani R R,Thornton P E,et al.Satellite Evidence of Phenological Differences between Urbanized and Rural Areas of the Eastern United States Deciduous Broadleaved Forest[J].Ecosystems,2002,5:260-277.

[9]Churkina G,Schimel D,Braswell B H,et al.Spatial Analysis of Growing Season Length Control over Net Ecosystem Exchange[J].Global Change Biology,2005,11:1777-1787.

[10]Houghton J T.The Scientific Basis:Contribution of Working Group to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2001.

[11]Zhu Kezhen,Wei Minwei.Phenology[M].Beijing:Science Press,1973:1-3.[竺可桢,宛敏渭.物候学[M].北京:科学出版社,1973:1-3.]

[12]Friedl M,Henebry G M,Reed B,et al.Land Surface Phenology NASA White Paper[DB/OL].2006.http://lcluc.umd.edu/Documents/landesdr.asp.Viewed 7 Dec 2007.

[13]Richardson A D,Hollinger D Y,Dail D B,et al.Influence of Spring Phenology on Seasonal and Annual Carbon Balance in Two Contrasting New England Forests[J].Tree Physiology,2009,29(3):321-331.

[14]Baldocchi D,Falge E,Gu L H,et al.FLUXNET:A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide,Water Vapor,and Energy Flux Densities[J].Bulletin of the American Meteorological Society,2001,82(11):2415-2434.

[15]Garrity S R,Bohrer G,Maurer K D,et al.A Comparison of Multiple Phenology Data Sources for Estimating Seasonal Transitions in Deciduous Forest Carbon Exchange[J].Agr Forest Meteorol,2011,151:1741-1752.

[16]Ahl D E,Gower S T,Burrows S N,et al.Monitoring Spring Canopy Phenology of a Deciduous Broadleaf Forest Using MODIS[J].Remote Sensing of Environment,2006,104:88-95.

[17]Yang Xiaofang,Chen Xiaoqiu,Luo Xiangzhong.Ground Photography Verification of Remote Sensing-derived Vegetation Phenology in the Xilinguole Grassland[J].Pratacultural Science,2015,32(5):667-674.[杨晓芳,陈效逑,罗祥中.锡林格勒草原遥感植被物候的地面照相验证[J].草业科学,2015,32(5):667-674.]

[18]Zhou Lei,He Honglin,Sun Xiaomin,et al.Using Digital Repeat Photography to Model Winter Wheat Phenology and Hotosynthetic CO2 Uptake[J].Acta Ecologica Sinica,2012,32(16):5146-5153.[周磊,何洪林,孙晓敏,等.基于数字相机的冬小麦物候和碳交换监测[J].生态学报,2012,32(16):5146-5153.] 〖JP〗

[19]Qin Zhong,Yu Qiang,Xu Shouhua,et al.Water,Heat Fluxes and Water Use Efficiency Measurement and Modeling above a Farmland in the North China Plain[J].Science in China Series D,2004,34(Sup.Ⅱ):183-192.[秦钟,于强,许守华,等.华北平原农田水热通量与作物水分利用效率的特征与模拟[J].中国科学D辑,2004,34(境刊:Ⅱ):183-192.]

[20]Lin Zhonghui,Mo Xingguo.Phenologies from Harmonics Analysis of AVHRR NDVI Time Series[J].Transactions of the Chinese Society of Agricultural Engineering,2006,22(12):138-144.[林忠辉,莫兴国.NDVI时间序列谐波分析与地表物候信息获取[J].农业工程学报,2006,22(12):138-144.]

[21]Huete A,Didan K,Miura T,et al.Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices[J].Remote Sensing of Environment,2002,83:195-213.

[22]Richardson A D,Jenkins J P,Braswell B H,et al.Use of Digital Webcam Images to Track Spring Green-up in a Deciduous Broadleaf Forest[J].Oecologia,2007,152(2):323-334.

[23]Adamsen F J,Pinter P J,Barnes E M,et al.Measuring Wheat Senescence with a Digital Camera[J].Crop Science,1999,39 (3):719-724.

[24]Holben B N.Characteristics of Maximum-value Composite Images from Temporal AVHRR Data[J].International Journal of Remote Sensing,1986,7(11):1417-1434.

[25]Gu L H,Wilfred M P,Dennis D B,et al.Phenology:An integrative Environmental Science[M].New York:Springer,2003:35-58.

[26]Li J,Yu Q,Sun X M,et al.Carbon Dioxide Exchange and the Mechanism of Environmental Control in a Farmland Ecosystem in North China Plain[J].Science in China Series D,2006,49( Sup.Ⅱ):226-240.

[27]Yu Guirui,Sun Xiaomin.Theory and Methodology for Flux Measurement in Terrestrial Ecosystem[M].Beijing:Higher Education Press,2006:46-46.[于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006:46-46.]

[28]Li Chun,He Honglin,Liu Min,et al.The Design and Application of CO2 Flux Data Processing System at ChinaFLUX[J].Geo-Information Science,2008,10(5):557-565.[李春,何洪林,刘敏,等.ChinaFLUX CO2通量数据处理系统与应用[J].地球信息科学,2008,10(5):557-565.]

[29]Garrity S R,Bohrer G,Maurer K D,et al.AComparison of Multiple Phenology Data Sources for Estimating Seasonal Transitions in Deciduous Forest Carbon Exchange[J].Agricultural Forest Meteorology,2011,151:1741-1752.

[30]Reed B C,Brown J F,Vanderzee D,et al.Measuring Phenological Variability from Satellite Imagery[J].Journal of Vegetation Science,1994,5(5):703-714.doi:10.2307/3235884.[31]Schwartz M D.Green-wave Phenology[J].Nature,1998,394(6696):839-840.

[32]Yan Yaner,Zhao Bin,Guo Haiqiang,et al.On the Coupling between Eddy Covariance and Remote Sensing Techniques in Ecosystem Carbon Flux Estimation[J].Advance in Earth Sciences,2008,23(8):884-894.[严燕儿,赵斌,郭海强,等.生态系统碳通量估算中耦合涡度协方差与遥感技术研究进展[J].地球科学进展,2008,23(8):884-894.]

[33]Gao X,Huete A R,Ni W,et al.Optical-biophysical Relationships of Vegetation Spectra without Background Contamination[J].Remote Sensing of Environment,2000,74:609-620.

[34]Ma Jingjing,Yuan Jinguo.Relationship between NDVI View Zenith Angle and LAI based on Model[J].Remote Sensing Technology and Application,2014,29(4):539-546.[马晶晶,袁金国.基于模型模拟的植被NDVI与观测天顶角和LAI的关系[J].遥感技术与应用,2014,29(4):539-546.]

[35]Yang Jianying,Mei Xurong,Liu Qin,et al.Variations of Winter Wheat Growth Stages Under Climate Changes in Northern China[J].Chinese Journal of Plant Ecology,2011,35(6):623-631.[杨建莹,梅旭荣,刘勤,等.气候变化背景下华北地区冬小麦生育期的变化特征[J].植物生态学报,2011,35(6):623-631.] 

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 滕佳昆,刘宇,丁明涛. 基于RGB图像的刺槐季节变化监测适用指数研究[J]. 遥感技术与应用, 2018, 33(3): 476-485.
[14] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[15] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.